
BRNO UNIVERSITY OF TECHNOLOGY

FACULTY OF CIVIL ENGINEERING

MATHEMATICS

Mathematics Used in Specialised Courses Taught at FCE

FRV 808/2009/F1/a Project
BUT Faculty of Civil Engineering

COMPLEMENTARY STUDY MATERIAL
FOR FCE STUDENTS



1

0Typeset by LATEX2e
c© Institute of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, Brno University of Technology, 2009

———————————————————————————————————



2

———————————————————————————————————



Contents

Introduction 4

1 Elementary problems 7

2 Advanced problems 15
2.1 Euler’s lateral stiffness . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 A beam on Winkler foundation . . . . . . . . . . . . . . . . . . . 17
2.3 Kirchhoff circular symmetric plate . . . . . . . . . . . . . . . . . . 20
2.4 Fourier analysis of heat conduction through a wall . . . . . . . . . 23
2.5 Bredt formulas for rod twisting . . . . . . . . . . . . . . . . . . . 26
2.6 Boussinesq elastic foundation . . . . . . . . . . . . . . . . . . . . 28
2.7 The volume and centre of mass of the pressed concrete area . . . 30
2.8 Optimizing concrete mix by Feret . . . . . . . . . . . . . . . . . . 37
2.9 Free oscillation of a pole . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 Transition curve for a road . . . . . . . . . . . . . . . . . . . . . . 46
2.11 Discharge through an orifice in a vertical wall . . . . . . . . . . . 49
2.12 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.12.1 Free harmonics . . . . . . . . . . . . . . . . . . . . . . . . 53
2.12.2 Damped oscillations . . . . . . . . . . . . . . . . . . . . . 55
2.12.3 Forced oscillations . . . . . . . . . . . . . . . . . . . . . . 56

Recommended reading 59

———————————————————————————————————



4 CONTENTS

———————————————————————————————————



Introduction

The transition to a new Bachelor’s degree study structure has brought many
changes. New Bachelor’s and Master’s degree programmes have been accredited.
Although the previous mathematical content has been preserved, its distribution
across the courses has changed. While the probability and mathematical statistics
courses have been shifted to the third year, numerical mathematics is now taught
in the first year of the follow-up Master’s degree programme .

The introduction of Bachelor’s degree programmes has brought about prob-
lems with the difference between what is taught and what is required of the
students as compared with the previous engineering study. This also relates to
the way mathematical theory is used to justify the results of the parts taught in
specialisations for which there is less time and which are viewed as too difficult by
the Bachelor’s students. Note that Bachelor’s degree programmes take four years
with most of the students continuing in the follow-up three-semester master’s
degree programmes. Graduates from a follow-up Master’s programme should be
able to read literature specific for their field that does not avoid mathematics.

Therefore, it is certainly good to remind Bachelor’s students of problems
encountered in specialized courses that use the mathematical background taught
in the mathematics courses. This may encourage at least some of them to devote
more effort to the mathematics taught in the basic courses convincing them of
its importance.

This is also the main purpose of this collection of problems. What is presented
here is only its first version. It should be further extended to contain more
mathematical topics applied in more specialised courses taught at the Faculty of
Civil Engineering.

It is our pleasure to thank all the colleagues from other faculty departments
who have contributed to work on this collection.

The authors
December 2009
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Chapter 1

Elementary problems

Problem 1 ([7], s. 9) How will the length change of a bar 3.2 m long hanging by
its upper end? (The modulus of elasticity in tension of steel is E = 2 · 1011 Pa,

density ρ = 7800 kg ·m−3, ∆l =
∫ l

0
ρg
E
· (l − y) dy .)

Solution:

∆l =

∫ l

0

ρg

E
· (l − y) dy =

ρg

E

[
ly − y2

2

]l

0

=
ρg

E
· l

2

2
=

=
7, 8 · 103 kg · m−3 · 9, 81m · s−2 · (3, 2m)2

2 · 1011 Pa · 2 = 1, 96 · 10−6m

Problem 2 ([7], s. 36) A wooden cylinder is submerged in water until two
thirds of its height. What work is done if the cylinder is completely pulled out of
water? The cylinder radius is 10 cm, its height is 60 cm, the specific density of
wood is ρD = 600 kg ·m−3. The water level in the vessel is assumed to be constant.

Solution: The total work done when two thirds of the height are pulled out
is given by

W =

∫ 2
3
h

0

(π · r2 · h · ρD · g − π · r2 · y · ρV · g) dy = πr2g

∫ 2
3
h

0

(h · ρD − y · ρV ) dy.

Then

W = πr2g

[
hρDy − y2

2
ρV

] 2
3
h

0

= πr2g

(
2

3
h2ρD − 4

18
h2ρV

)
=

2

3
πr2gh2(ρD − 1

3
ρV )

=
2

3
π(0, 1m)29, 81m · s−2(0, 6m)2(600 kg ·m−3 − 1

3
1000 kg ·m−3) = 19, 7 J.
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8 Elementary problems

Problem 3 ([7], p. 38, modified) By what strength does the water press on
the dam of a reservoir having the shape of a trapezium (see the below figures)?

(F =
∫ h

0

(
a−b
2c
y + b

2

)
yρg dy.)

The reservoir dam. The dam dimensions – notation.

Solution:

F =

∫ h

0

(
a− b

2c
y +

b

2

)
yρg dy =

= ρg
a− b

2c

[
y3

3

]h

0

+ ρg
b

2

[
y2

2

]h

0

=
1

2
ρgh2

[
a− b

3c
h+

b

2

]
=

=
1

2
1000 kg·m−3 ·9, 81m·s−2(40m)2

[
90m− 60m

3 · 50m
· 40m+

60m

2

]
= 2, 98·108 N.

Problem 4 ([8], p. 8, modified) Calculate the velocity and acceleration of the
movement of a mass point described by

s(t) = (0, 06m) · cos

(
(1, 5πs−1)t+

2

3
π

)
.

Solution: The velocity is calculated by differentiating the function of move-
ment by time

v(t) =
ds(t)

dt
= s′(t) = −(0, 06m)(1, 5πs−1) · sin

(
(1, 5πs−1)t+

2

3
π

)
,

v(t) = −(0, 09πm s−1) · sin
(

(1, 5πs−1)t+
2

3
π

)

while the acceleration by differentiating the velocity by time

a(t) =
dv(t)

dt
= v′(t) = −(0, 09πms−1)(1, 5πs−1) · cos

(
(1, 5πs−1)t+

2

3
π

)
,

a(t) = −(0, 135π2ms−2) · cos

(
(1, 5πs−1)t+

2

3
π

)
.
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Problem 5 ([8], s. 46) Find the form of a wave equation whose solution is
a plane wave propagating along the x-axis according to the equation

u = u(x, t) = U · sin(ω · t− k · x+ ϕ).

Solution: Let us calculate the partial derivative of u by each variable

∂u(x, t)

∂t
= U · ω · cos(ω · t− k · x+ ϕ),

∂2u(x, t)

∂t2
= −U · ω2 · sin(ω · t− k · x+ ϕ) = −ω2 · u(x, t),

∂u(x, t)

∂x
= −U · k · cos(ω · t− k · x+ ϕ),

∂2u(x, t)

∂x2
= −U · k2 · sin(ω · t− k · x+ ϕ) = −k2 · u(x, t).

Expressing u from the second partial derivative by t and substituting into the
second partial derivative by x, we obtain

∂2u

∂x2
=
k2

ω2
· ∂

2u

∂t2
,

where c = ω/k defines the phase velocity c. This results in the equation

∂2u

∂x2
=

1

c2
· ∂

2u

∂t2
.

Problem 6 ([9], p. 53) Filling and emptying a prismatic vessel through
an opening with Qp = const.

Solution: If the vessel has a constant section of Az = const. (cylinder, prism,
... ), we can write, for the time needed to change the level position from z1 to z2,

t = Az

∫ z2

z1

dz

Qp − µA
√

2gz
, (1.1)

where the inflow Qp can be expressed using the area of the outflow opening A
and the value zu, at which the level would stabilize if the inflow was equal to the
outflow:

Qp = µA
√

2gzu,

where A is the area of the outflow opening and µ is an outflow coefficient. Sub-
stituting this into the integral (1.1), we obtain:

t = Az

∫ z2

z1

dz

µA
√

2gzu − µA
√

2gz
=

Az
µA
√

2g

∫ z2

z1

dz√
zu −

√
z
.

———————————————————————————————————
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To solve the integral, we can use the substitution:

y =
√
zu −

√
z, dz = −2(

√
zu − y) dy

with the integration limits being:

z z1 z2

y =
√
zu −

√
z y1 =

√
zu −√z1 y2 =

√
zu −√z2

.

The solution has the form:

t = − 2Az
µA
√

2g

∫ y(z2)

y(z1)

√
zu − y
y

dy =
2Az

µA
√

2g

∫ y2

y1

(
1−
√
zu
y

)
dy =

=
2Az

µA
√

2g
[y −√zu ln |y|]

√
zu−√z2√
zu−√z1 =

2Az
µA
√

2g

[√
z1 −√z2 −√zu · ln

√
zu −√z2√
zu −√z1

]
.

For a prismatic vessel with no inflow (zu = 0), the time needed to change the
water level position from z1 to z2:

t = −Az
∫ z2

z1

dz

µA
√

2gz
=

Az
µA
√

2g

∫ z1

z2

1√
z
dz =

=
2Az

µA
√

2g

[√
z
]z1
z2

=
2Az

µA
√

2g
(
√
z1 −√z2).

The time needed to completely empty (z2 = 0) a prismatic vessel without
inflow (zu = 0) is:

T =
2Az
√
z1

µA
√

2g
.

Problem 7 ([9], s. 54) Filling a cylinder cistern with Qp = const.

Solution: A cylinder vessel with horizontal axis is being emptied through
a hole at the lowest point while air flows into the space above the liquid level.
The level area changes with the level Az = 2L

√
z(2r − z), where L is the length

of the cistern, r is its radius and z is the level height. The time needed to
change the level height from z1 to z2 is obtained by substituting Az into (1.1)
with Qp = 0:

t = −
∫ z2

z1

Azdz

µA
√

2gz
= − 2L

µA
√

2g

∫ z2

z1

√
2r − z dz.

This integral can be solved by the substitution

y = 2r − z, dz = −dy

———————————————————————————————————
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with the integration limits:

z z1 z2

y = 2r − z y1 = 2r − z1 y2 = 2r − z2

The time needed to move the level from z1 to z2 is then:

t =
2L

µA
√

2g

∫ y2

y1

√
y dy =

2

3

2L

µA
√

2g

[
y

3
2

]2r−z2

2r−z1
=

=
4L

3µA
√

2g

(
(2r − z2)

3
2 − (2r − z1)

3
2

)
.

The time during which the entire cistern (z1 = 2r = d a z2 = 0) is emptied is

T =
4Ld

3
2

3µA
√

2g
∼ 0, 301

Ld
3
2

µA
.

Problem 8 ([10], p. 38, Example 4.4) Using the Planck law, derive the
Stefan–Boltzman radiation law.

Solution: The equation Φe =
∫∞

0
Φλ dλ, is transformed into a form containing

radiation intensities (substituting Φe = MeS, and Φλ = MλS), that is,

Me =

∫ ∞
0

Mλ dλ

with the Planck law

Mλ(λ, T ) =
c1

λ5 ·
(
e
c2
λT − 1

) , c1 = 2πhc2, c2 =
hc

k
,

substituted for Mλ which yields the integral

Me =

∫ ∞
0

c1

λ5 ·
(
e
c2
λT − 1

) dλ .

Using the substitution x = c2
λT

, we find

λ =
c2

T
x−1,

dλ

dx
= −c2

T
x−2,

which is to be substituted into the integral equation. Then

Me =

∫ 0

∞

c1(
c2
T
x−1
)5

(ex − 1)

(
−c2

T
x−2
)
dx =

c1T
4

c4
2

∫ ∞
0

x3

ex − 1
dx ,

———————————————————————————————————
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where the integral is ∫ ∞
0

x3

ex − 1
dx =

π4

15
.

After substituting for the constants c1 and c2, we obtain the Stefan–Boltzman
radiation law

Me =
2π5k4

15h3c2
T 4 = σT 4.

Problem 9 ([10], p. 38, Example 4.5) Using the Planck black-body radiation
law, derive Wien’s displacement law.

Solution: The wave length in Wien’s displacement law is subject to the max-

imum condition of the function ∂Mλ
∂λ

= 0. Substituting into this condition the
Planck radiation law

Mλ(λ, T ) =
c1

λ5 ·
(
e
c2
λT − 1

) ,

we get the equation

−5c1

λ6
· 1

e
c2
λT − 1

+
c1

λ5
·

c2
λ2T

e
c2
λT

(
e
c2
λT − 1

)2 = 0,

which can be cancelled by c1

λ6 · 1
e
c2
λT − 1

yielding

c2

λT
· e

c2
λT

e
c2
λT − 1

= 5.

By using the substitution x = c2
λT

, we obtain the equation

xex = 5(ex − 1),

which is solved by x = 4, 965. Using the substitution x = c2
λT

we modify for the
area of maximum radiation into the form λmT = c2/x = b where the wave length
is denoted by the maximum index with the Wien constant b = c2/x introduced.
After substituting the constant c2 and x = 4, 965, we get b = 2, 898 · 10−3m ·K.

Problem 10 ([11], p. 119, Example 6.1) Find the mean and virtual amperes
of a harmonic current with a period of T and amplitude of Im after half-wave
rectification.

Solution: The time dependence of the current i = Im sinωt after half-wave
rectification in each period is given by

i(t) =

{
Im sinωt pro t ∈ 〈0, T

2
〉,

0 pro t ∈ 〈T
2
, T 〉,

where ω = 2π/T.

———————————————————————————————————
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a) The mean value of the current in the time period 〈0, T 〉 is

Is =
1

T

∫ T/2

0

Im sin
2π

T
t dt =

1

T
Im

T

2π

[
− cos

2π

T
t

]T/2

0

=
Im
π
.

b) The virtual amperes I in the time period 〈0, T 〉 can be determined from
the equation

I2 =
1

T

∫ T/2

0

I2
m sin2 2π

T
t dt =

1

T

I2
m

2

∫ T/2

0

(
1− cos

4π

T
t

)
dt =

I2
m

4
,

I =
Im
2
.

———————————————————————————————————
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Chapter 2

Advanced problems

2.1 Euler’s lateral stiffness

Determine the translation of all the points of a hinge-connected linearly elastic
steel pole with a length of l, of a circular section with a diameter of r << l, loaded
by an axial force of N ; neglect gravitational forces. Young’s positive modulus of
elasticity E (in tension, compression, and torsion) is known.

Solution: Consider the pole as a one-dimensional structure with points
x ∈ 〈0, l〉, with a fixed joint at x = 0 and a telescopic joint at x = l where
a force N is applied, which is positive if compressive and negative if tensile

First calculate the area of the section A and the inertia moment J (for a planar
problem, in a direction perpendicular to x):

A = πr2 ,

J =

∫ 2π

0

dϕ

∫ r

0

(ρ cosϕ)2 · ρ dρ =
1

2

∫ 2π

0

(1 + cos(2ϕ)) dϕ

∫ R

0

ρ3 dρ

=
1

2

[
ϕ+

1

2
sin(2ϕ)

]2π

0

[
1

4
ρ4

]r

0

=
1

2
· 2π · 1

4
r4 =

1

4
πr4 .

Denote by σ the tension in the pole, by ε the deformation, by u the translation
in the direction of x, and by w the translation in the direction perpendicular
to x. In the first-order theory (equilibrium is formulated on a non-deformed
structure) we have w = 0 with the stress and deformation conditions determined
by Cauchy’s equilibrium condition, Hooke’s law, and by the relationship between
translation and deformation:

σ′ = 0 , σ = Eε , ε = u′ .

The initial conditions are u(0) = 0 and σ(l) = N/A.

———————————————————————————————————



16 Advanced problems

For the u variable, we only obtain

EAu′′ = 0 , u(0) = 0 , EAu′(l) = N .

Thus the resulting translation is

u =
N

EA
x ;

which corresponds to the constant deformation ε = N/(EA) and stress σ = N/A.
This result is nearing reality only for N < 0 (tensile), or N = 0 (pole not

loaded), but not forN > 0 (compressive). In the second-order theory (equilibrium
is formulated on a deformed structure) also a bending moment M = Nw, is
included, which can be written as

M = −EJκ(w) ,

where κ(w) is the first curvature of the pole, that is, the deviation of its central
line from the straight line in the osculating plane. Here, the boundary conditions
are w(0) = w(l) = 0. Exactly, we have

κ(w) =
w′′√

(1 + w′2)3/2
.

Thus, we obtain

κ(w) +
N

EJ
w = 0 .

As yet, we have only considered κ(w) = 0, now put κ(w) = w′′; this of course
brings us to a special two-dimensional (planar) model. Denoting

α =

√
|N |
EJ

,

we get for N < 0 a linear differential equation with constant coefficients

w′′ + α2w = 0 ,

similarly, for N > 0,
w′′ − α2w = 0 ,

and finally, for N = 0, only w′′ = 0, which means w = 0 due to the boundary
conditions.

For N < 0, the general solution is

w = C1 sinh(αx) + C2 cosh(αx) ,

where C1 and C2 are determined by the boundary conditions:

C2 = 0 , C1 sinh(αl) + C2 cosh(αl) = 0 .

———————————————————————————————————



2.2 A beam on Winkler foundation 17

Since αl > 0, sinh(αl) = 0 is not possible so that C1 = 0, too, and w = 0. The
result we have obtained is not anything new.

For N > 0, the general solution is

w = C1 sinh(αx) + C2 cosh(αx) ,

where C1 and C2 are determined by the boundary conditions:

C2 = 0 , C1 sin(αl) + C2 cos(αl) = 0 .

If sinh(αl) 6= 0, we have C1 = 0 again, and so w = 0; the case sinh(αl) 6= 0,
cannot, however, be excluded. This case occurs for α = kπ/l and any natural k.
Subsequently, we have

w = C1 sin
kπx

l
,

where C1 can be chosen arbitrarily; for x = l/2, for instance, we have an arbitrary
sag w = C1. The corresponding compressive force is

N = EJ

(
kπ

l

)2

;

in practice, even the first force for k = 1, referred to as Euler’s critical force, is
dangerous. It is then usually used to derive what is called lateral stiffness used
by many technical standards.

The non-realistic value of the bending w is due to the simplification: gravita-
tion neglected, κ(w) linearised, etc. For a more precise result, more background
would be required from the theory of differential equations, particularly concern-
ing the eigenvalues of differential operators, which may be non-linear, and their
numeric solutions.

2.2 A beam on Winkler foundation

Determine the sag of a linearly elastic beam with a length of l fixed at both ends
with a positive lateral uniform load of q, of a rectangular section with a length of b
and height (in the direction of the load) of h. Young’s bending modulus E for the
beam is known to be positive with the beam placed on a Winkler foundation with
a positive module (expressed as pressure per beam length unit) K. Investigate
also the limit case of K → 0.

Solution: First the inertia moment must be calculated

J =

∫ b/2

−b/2
dx

∫ h/2

−h/2
y2 dy = [x]

b/2
−b/2

[
1

3
y3

]h/2

−h/2
=

1

12
bh3 .

———————————————————————————————————



18 Advanced problems

The equations of the elementary beam bending theory (at first without con-
sidering the effect of the foundation) for load q (constant here), translating force
T , bending moment M , rotation ϕ and sag w (using the usual sign convention)
are the following

T ′ = −q , M ′ = T , EJϕ′ = −M , w′ = ϕ ;

excluding T , M , and ϕ yields

EJw′′′′ = q .

Directly integrating four times, we can easily get a general solution of this
equation

EJw = C0 + C1x+ C2x
2 + C3x

3 +
qx4

24
.

For its first derivative, we then have

EJw′ = C1 + 2C2x+ 3C3x
2 +

qx3

6
.

The constants C0, C1, C2, and C3 can be calculated using the boundary
conditions at the fixed points

w(0) = 0 , ϕ(0) = 0 , w(l) = 0 , ϕ(l) = 0

or
w(0) = 0 , w′(0) = 0 , w(l) = 0 , w′(l) = 0 .

Clearly, C0 = C1 = 0; for the remaining two constants, we have the following
system of equations

[
l2 l3

2l 3l2

] [
C2

C3

]
= −ql

2

24

[
l2

4l

]
,

which can be soved by Cramer’s rule:

C2 = −ql
2

24
· 3l4 − 4l4

3l2 − 2l2
=
ql2

24
, C3 = −ql

2

24
· 4l3 − 2l3

3l2 − 2l2
= −2ql

24
.

Thus, we obtain

w =
ql2

24EJ
(l − x)2

and, particularly for x = l/2, the known formula

w(l/2) =
ql4

384EJ
.

———————————————————————————————————



2.2 A beam on Winkler foundation 19

To include the foundation effect it is sufficient to replace q in the above dif-
ferential equations by q − kbw. Denoting

β =
4

√
kb

4EJ
, γ = 4

√
q

4EJ
,

we get
4w′′′′ + β4w = γ4 .

The characteristic equation for the corresponding homogeneous equation
(with the right-hand side equal to zero) is

4λ4 + β4 = 0 .

Its four complex solutions in the form λ = ρ(cosϕ + i sinϕ) can be found using
de Moivre’s theorem for j ∈ {0, 1, 2, 3} and the equation

(
√

2ρ)4(cos(4ϕ) + i sin(4ϕ)) = β4(cos((2j + 1)π) + i sin((2j + 1)π)) .

Clearly,
√

2ρ = β and ϕ = (2j + 1)π/4 so that

λ ∈ {β + iβ, β − iβ,−β + iβ,−β − iβ} .

A general solution of the (non-homogeneous) equation can then be written as

w = A1 exp(βx) sin(βx) + A2 exp(βx) cos(βx)

+A3 exp(−βx) sin(βx) + A4 exp(−βx) cos(βx) + γ .

Its first derivative is

w′ = (A1 − A2)β exp(βx) sin(βx) + (A1 + A2)β exp(βx) cos(βx)

− (A3 + A4)β exp(−βx) sin(βx) + (A3 − A4)β exp(−βx) cos(βx) .

The constants A1, A2, A2, and A4 can be calculated using the boundary
conditions at the fixed points. Denoting for simplicity

α1 = exp(βl) sin(βl) , α2 = exp(βl) cos(βl)

α3 = exp(−βl) sin(βl) , α4 = exp(−βl) cos(βl) ,

we obtain the following system of four equations




0 1 0 1
1 1 1 −1
α1 α2 α3 α4

α1 + α2 α2 − α1 α4 − α3 −α3 − α4







A1

A2

A3

A4


 =




γ
0
γ
0


 .

———————————————————————————————————
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The first two equations can be used to calculate

A4 = γ − A2 , A3 = A4 − A1 − A2 = γ − A1 − 2A2 ;

substituting them will then yield a system of only two equations

[
α1 − α3 α2 − 2α3 + α4

α1 + α2 + α3 − α4 α2 − α1 + 2α3

] [
A1

A2

]
=

[
γ(1− α3 − α4)

2γα3

]
.

By Cramer’s rule then, A1 = D1/D a A2 = D2/D with

D = α2
1 − 5α1α3 + α2

2 − 2α2α4 + α3α4 − α1α4 + α2
4 ,

D1 = −γ(α1 − α2 − 2α3 − α1α3 − α1α4 + 3α2α3 + α2α4 − 2α2
3) ,

D2 = γ(α1 + α2 + α3 − α4 − 3α1α3 − α1α4 − α2α3 − α2α4 + α2
3 + α2

4) .

Particularly, for x = l/2 (and the already known constants A1, A2, A3 and A4),
we have

w(l/2) = A1 exp(βl/2) sin(βl/2) + A2 exp(βl/2) cos(βl/2)

+A3 exp(−βl/2) sin(−βl/2) + A4 exp(−βl/2) cos(−βl/2) + γ

or (using familiar trigonometric formulas)

2w(l/2) = A1(exp(βl/2)− α2 exp(−βl/2)) + A2(exp(βl/2) + α2 exp(−βl/2))

+A3(exp(−βl/2)− α4 exp(βl/2)) + A4(exp(−βl/2) + α4 exp(βl/2))) + 2γ .

The case of k = 0 has already been dealt with separately. For k → 0+ clearly
β → 0+ and, using limit analysis (and L’Hospitals rule), we should achieve the
same result. However, this would be too tedious and is, therefore, left to the
patient reader.

2.3 Kirchhoff circular symmetric plate

Using the Kirchhoff theory of bending thin plates, determine the maximum sag of
an elastic homogeneous and isotropic thin cylindrical plate with a thickness of h
and radius of r >> h, caused by a special rotational symmetric lateral load. The
material density ρ, Young’s elasticity modulus E, Poisson’s constant µ (between 0
and 1) and the local gravitational acceleration g are known. The load as prescribed
is such that its known line resultant q (force per length unit related to the plate
diameter) does not depend on the distance from the centre of the plate.

Solution: We will use cylindrical coordinates (ρ, ϕ, z) to describe the plate:
the plate has the following position ρ ∈ [0, r], ω ∈ [0, 2π), z ∈ [−h/2, h/2]. The
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normal stresses σr, σω and tangential stress τρz are in Kirchhoff’s theory for the
rotational symmetric state of stress and deformation replaced by their line, force,
and moment resultants, that is, by the translating force and bending moments
in the radial and tangential directions

t =

∫ h/2

−h/2
τrz dz , mρ =

∫ h/2

−h/2
zσρ dz , mω =

∫ h/2

−h/2
zσω dz ,

which means that the Cauchy conditions of static equilibrium only generate one
force and one momentum equation (prime in this problem denotes the derivative
by ρ)

t′ +
t

ρ
+ q = 0 , mρ −mϕ + ρm′ρ = ρt .

where q is the total lateral line load obtained by integrating over ω ∈ [0, 2π).
The first equation can be written in the form

ρt′ + t = −ρq
to calculate t using the substitution t = exp(η). Clearly, t′ = exp(−η)ṫ (here, the
dot denotes differentiation by the new variable η). After substituting, we already
have an equation with constant coefficients

ṫ+ t = exp(−η) ,

with a general solution

t = C exp(−η)− q

2
exp(η) =

C

ρ
− q

2
ρ

which depends on a constant C. However, since for ρ → 0+, t → ±∞ is not
possible, C = 0 is clearly true.

Translation in the direction of ρ is in Kirchhoff’s theory considered as
u = −zϕ, where ϕ is the angle between the section of the middle plane of the de-
formed plate and the r axis, with w′ = ϕ for the sag w so that, for the deformation
components, we have

εr = u′ = −zϕ′ , εϕ =
u

ρ
= −zω

ρ

and the linear Hooke law can be written in the form

σρ =
E

1− µ2
(εr + µεϕ) , σω =

E

1− µ2
(εϕ + µεr) .

Expressing σr and σϕ in terms of ερ and εϕ, and, subsequently, using ϕ and ϕ′ in
the result, introducing the concise denotation

B =
Eh3

12(1− µ2)
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(referred to as lateral rigidity), after some simplification, we get

mρ = −B
(
ϕ′ + µ

ϕ

ρ

)
, mω = −B

(
µ
ϕ

ρ
+ µϕ′

)
.

Substituting these equations into the moment equation, we finally obtain

ϕ′′ +
ϕ′

ρ
− ϕ

ρ2
= − t

B
.

As t = −qρ/2, the derived equation can be written as

ρ2ϕ′′ + ρϕ′ − ϕ =
q

2B
ρ3

and used for calculating t by the substitution ϕ = exp(κ) (here, the dot de-
notes differentiating by the new variable κ). Clearly, ϕ′ = exp(−κ)ρ̇ and
ϕ′ = exp(−2κ)(ϕ̈− ϕ̇). After substituting, we obtain an equation with constant
coefficients

ϕ̈− ϕ =
q

2B
exp(3κ) ,

with a general solution

ϕ = C1 exp(κ) + C0 exp(−κ) +
q

16B
exp(3κ) = C1ρ+

C0

ρ
+

q

16B
ρ3

which depends on the constants C0 a C1. However, since ρ→ 0+ does not allow
ϕ→ ±∞, clearly, C0 = 0.

Using

ϕ = C1ρ+
q

16B
ρ3 , ϕ′ = C1 +

3q

16B
ρ2

we can now calculate

mρ = −B
(
C1 +

3q

16B
ρ2 + µC1 + µ

q

16B
ρ2

)

= −B
(

(1 + µ)C1 + (3 + µ)
q

16B
ρ2
)
.

Using the condition of zero lateral moment mρ(r) = 0, we then obtain

C1 = −3 + µ

1 + µ
· q

16B
r2 ,

and thus

ϕ = − q

16B

(
3 + µ

1 + µ
r2ρ− ρ3

)
.
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By direct integration, we calculate

w = − q

16B

(
3 + µ

1 + µ
r2ρ

2

2
− ρ4

4

)
+K = − qρ4

64B

(
2

3 + µ

1 + µ
r2 − ρ2

)
+K ,

where the last unknown integration constant K can be found from the zero sag
condition w(r) = 0 in the form

K =
qr4

64B

(
2

3 + µ

1 + µ
− 1

)
=

3qr4

16Eh3

(
5 + 8µ+ 3µ2

)
.

Clearly, the equation ϕ = 0 (or w′ = 0) has a single solution ρ = 0, which
means that the function w can only reach extremal values at the points ρ = 0
and ρ = r. However, since w(r) = 0, the maximum sag of the plate is w(0) = K.

2.4 Fourier analysis of heat conduction through

a wall

The temperature of the environment on the left-hand side of a wall with a thick-
ness of l differs from a reference temperature τ at the time t ∈ [0, t∗], where
t∗ is the length of a time interval given, by values given by a function ϑ0(t),
while that on the right-hand side by values given by a function ϑ1(t); for t = 0,
both functions are zeroes. Using a one-dimensional heat conduction model by
Fourier’s law, (ignoring internal heat sources, heat transfer and heat emission)
describe the development of temperature T in the wall. Particularly, determine
the temperature in the middle of the wall at the final time t∗ assuming

ϑ1(t) = 0 , ϑ0(t) =
δt∗
π

sin
πt

t∗
,

where δ is the known time increment over time. The heat conductivity of the wall
material λ, its thermal capacity (per unit of mass) c and density ρ are known.

Solution: Let x ∈ [0, l] be the position of a point in the wall; here, the dot
denotes differentiation by t and the prime by x. Then, the heat conduction
equation for the unknown temperature T (x, t) based on Fourier’s law

q = −λT ′

for the heat flow q(x, t), and on the energy conservation law

cρṪ + q′ = 0 ,

can be written in the form
cρṪ − λT ′′ = 0 .
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Introducing heat conductivity a = λ/(cρ) and denoting τ = T − ϑ with

ϑ(x, t) = ϑ0(t)
(

1− x

l

)
+ ϑ1(t)

x

l
,

we have
τ̇ − aτ ′′ = −ϑ̇ ,

where both for x = 0 and for x = l always τ = 0.
By the Fourier method of the separation of variables, τ can be assumed in

the form

τ =
∞∑
n=1

ϕn(x)ψn(t) ,

where the functions ϕn form an orthogonal basis of the space of Lebesgue square-
integrable functions on the interval [0, l], with ϕn(0) = ϕ(l) = 0, and the functions
ψn belong to a similar space of functions on the interval [0, t∗]. Thus we have

∞∑
n=1

ϕnψ̇n − a
∞∑
n=1

ϕ′′nψn = −ϑ̇ .

In the first of the above spaces, we can define a dot product

(f, g) =

∫ l

0

f(x)g(x)dx

for any two functions f and g. If, for any natural n, the equation is multiplied
by a formal function ϕn(x) and the result integrated over the interval [0, l], the
following result is obtained

(ϕn, ϕn)ψ̇n − a(ϕn, ϕ
′′
n)ψn = −(ϕn, ϑ̇) .

Integrating by parts yields

(ϕn, ϕn)ψ̇n + a(ϕ′n, ϕ
′
n)ψn = −(ϕn, ϑ̇) .

Thanks to the new denotation

αn =
(ϕ′n, ϕ

′
n)

(ϕn, ϕn)
, ζn(t) = −(ϕn, ϑ̇(t))

(ϕn, ϕn)

this result can simply be written as

ψ̇n + αnaψn = ζn .

The equation thus derived can be solved for any natural n by the variation-of-
constant method. A general solution of the homogeneous equation (with a zero
right-hand side) is

ψn(t) = Cn exp(−αnat)
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for any real constant Cn; a particular solution of the original non-homogeneous
equation can thus be found in the form

ψn(t) = Kn(t) exp(−αnat) ,
which includes a certain time-dependent function Kn. However, the following is
obvious

K̇n(t) exp(−αnat) = ζn(t) ,

and so, integrating, we obtain

Kn(t) =

∫ t

0

exp(αnas)ζn(s) ds .

The initial condition requiring τ to be zero for t = 0 clearly implies

ψn(t) =

∫ t

0

exp(αna(s− t))ζn(s) ds .

The classical Fourier sine series

ϕn(x) = sin
nπx

l

for natural n satisfies both the boundary conditions ϕn(0) = ϕn(l), and the
orthogonality conditions (ϕn, ϕm) = 0 for any natural m. Moreover, we have

(ϕn, ϕn) =
l

2
, (ϕ′n, ϕ

′
n) =

(nπ)2

2l
,

(ϕn, l) = −(−1)n
l2

nπ
, (ϕn, l − x) =

l2

nπ
,

an thus also

αn =
(nπ
l

)2

,

ζn =
2

l

(
(ϕn, l − x)

ϑ̇0

l
+ (ϕn, x)

ϑ̇1

h

)
=

1

nπ

(
ϑ̇0 − (−1)nϑ̇1

)
.

(The derivation of these equations is not difficult but somewhat tedious; therefore
we leave it to the reader as an integrating-by-parts exercise.) Since τ is a (theoret-
ically infinite) sum of the products ϕn(x)ψn(t), ψn(x) is known and ψn(t) can be
calculated (using, for example, a numeric quadrature such as Simpson’s method)
from the integral containing the constant αn and function ζn(s) for s ∈ [0, t], we
can already determine T = τ + ϑ wherever in [0, l]× [0, t∗].

Denote ν = π/t∗. Particularly, using the substitution u = νt, we have

ϑ̇1 = 0 , ϑ̇0 = cos u , ζn =
δ

nπ
cos u ,
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so that ψn can be obtained integrating by parts in an exact form

ψn =
δ (αna cosu+ ν sinu− αna exp(−αnat))

nπ ((αna)2 + ν2)
.

Also we have

ϑ =
δ

ν
sinu ,

and thus

T =
∞∑
n=1

ϕnψn + ϑ

=
δ

π

( ∞∑
n=1

1

n
· αna cosu+ ν sin u− αna exp(−αnat)

(αna)2 + ν2
sin

nπx

l
+ t∗ sinu

)
.

Finally, we need to substitute t = t∗ and x = l/2. If we use the denotation εn
so that εn = 0 for an even n, εn = 1 for an odd n such that n+ 1 is divisible by
four and εn = −1 for any other odd n, we obtain

sin
nπx

l
= sin

nπ

2
= −εn ;

moreover, sin u = sin π = 0 and cos u = cos π = −1. The resulting temperature
is then (using the denotation αn and εn) the sum of the infinite series

T (l/2, t∗) =
δa

π

∞∑
n=1

αnεn
n
· 1 + exp(−αnat∗)

(αna)2 + (π/t∗)2
.

2.5 Bredt formulas for rod twisting

A thin-walled steel beam with a closed section, whose centre line is an ellipse
with semi-axes a and b ≤ and and which has a constant thickness of h << b
is stressed with a positive twisting moment M in one third of its span l >> a
and, from two thirds to the end of its span, with a positive uniform twisting
moment m, with 6M > ml. At both ends, the beam is fixed to prevent twisting.
Determine the extremal shear stress and extremal rotation of the beam assuming
elastic deformation with a known steel elastic shear modulus of G.

Solution: In dealing with the twisting of a thin-walled rod with a constant
thickness, we can apply a pair of Bredt formulas

W = 2Ah , I =
4hA2

s
,

containing section modulus W , shear stiffness moment I, area of the section
bounded by the centre curve A and length of this curve s. The extremal shear
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stress in the section (with the greatest absolute value) is then τ = K/W where
K is the respective twisting moment, and the rotation of the section ϑ can, for
x ∈ [0, l], be obtained by solving the equation K = −GIϕ′ with the initial
conditions ϑ(0) = ϑ(l) = 0.

In our case, the centre curve is the ellipse x = a cosϕ, y = b sinϕ for
ϕ ∈ [0, 2π), which means that

A =

∫ 2π

0

dϕ

∫ 1

0

abρ dρ = 2πab

[
1

2
ρ2

]1

0

= πab .

Differentiating by ϕ (denoted by a dot), we get

ẋ = −a sinϕ, ẏ = b cosϕ

and, using the denotation

k =

√
1−

(
b

a

)2

,

subsequently,

s =

∫ 2π

0

√
ẋ2 + ẏ2 dϕ = a

∫ 2π

0

√
1− (k cosϕ)2 dϕ .

For k = 0, that is, for a circle with a = b, this elliptic integral has a well-
known analytic result s = 2πa = 2πb, however, generally, s ∈ [2πb, 2πa] can
only be expressed as the sum of an infinite series or calculated using a numerical
procedure.

Denote by M0 the moment reaction at the left support next the intervals
Ω1 = 〈0, l/3〉, Ω2 = 〈l/3, 2l/3), Ω3 = 〈2l/3, l〉, Ω−1 = 〈0, l/3) and Ω+

2 = (l/3, 2l/3〉.
The condition of static equilibrium yields the function of the twisting moment

K(x) =




−M0 ∀x ∈ Ω−1 ,
M −M0 ∀x ∈ Ω+

2 ,
M −M0 +m(x− 2l/3) ∀x ∈ Ω3 .

Note that, here, we cannot just replace Ω−1 and Ω+
2 by Ω1 and Ω2 as the limit

of K(x) for x → l/3 does not exist (limits on the left and right are different).
This shortcoming (which can only be resolved by what is referred to as Dirac dis-
tribution), however, will not prevent us from further calculation: in integrating,
a single point has a zero measure.

As the problem is statically indeterminate, M0 must be determined from the
initial conditions. Considering the condition ϑ(0) = 0, direct integration yields

−GIϑ(x) =




−M0x ∀ x ∈ Ω1 ,
−M0x+M(x− l/3) ∀ x ∈ Ω2 ,
−M0x+M(x− l/3) +m(x− 2l/3)2 ∀ x ∈ Ω3 .
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From the condition ϑ(l) = 0 (and thus also −GIϑ(l) = 0) we already have
(independently of GI) the desired reaction

M0 =
2

3
M +

1

18
ml .

Finally, we get the function of the twisting moment

K(x) =




−2M/3−ml/18 ∀x ∈ Ω−1 ,
M/3−ml/18 ∀x ∈ Ω+

2 ,
M/3−ml/18 +m(x− 2l/3) ∀x ∈ Ω3 ,

while the rotation function is

GIϑ(x) =





(2M/3 +ml/18)x ∀x ∈ Ω1 ,
(2M/3 +ml/18)x−M(x− l/3) ∀x ∈ Ω2 ,
(2M/3 +ml/18)x−M(x− l/3)−m(x− 2l/3)2/2 ∀x ∈ Ω3 .

The extremal stress τ will occur at the point of the extremal twisting moment
K. The function K is clearly increasing so that

min τ =
K(0)

W
= − 1

W

(
2

3
M +

1

18
ml

)
,

max τ =
K(l)

W
=

1

W

(
1

3
M +

5

18
ml

)
.

Now we must find the extremal rotation, which necessitates K = 0 provided that
the derivative of ϑ exists. Since M > ml/6, in Ω−1 we clearly have K < 0 and in
Ω+

2 ∪ Ω3 we clearly have K > 0. Apart from x = 0 and x = l where ϑ = 0, we
only have x = l/3 where

GIϑ(l/3) =
l

9

(
2M +

1

6
ml

)
,

which means that

minϑ = 0 , maxϑ =
1

9GI

(
2M +

1

6
ml

)
.

2.6 Boussinesq elastic foundation

Determine the subsidence at the depth h below ground, caused by single loads P
taking effect at the vertices of a square with a diagonal of 2h. Assume that the
foundation behaves like a homogeneous isotropic elastic semi-space and that its
positive modulus of elasticity E > 0 and the Poisson constant µ ∈ 〈0, 1/2) are
known.
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Solution: For conciseness, denote a = 1− 2µ a b = a + 1 and introduce the
Lame constants

λ2 =
E

1 + µ
, λ1 =

λ2µ

a

(λ2 coincides with the modulus of elasticity in shear) and the Cartesian coordi-
nates xi, i ∈ {1, 2, 3}. We will also assume that the load is exerted in a direction
perpendicular to the plane x3 = 0 at the points A1 = [h, 0, 0], A2 = [−h, 0, 0],
A3 = [0, h, 0], A4 = [0,−h, 0].

For the stress components σij in the elastic semi-space x3 ≥ 0, we have the
Cauchy equilibrium equations

3∑

k=1

∂σkj/∂xj = 0 ∀ j ∈ {1, 2, 3} ,

for the deformation components εij then Hooke’s constitutive equation

σij = λ1δij

3∑

k=1

εkk + 2λ2εij ∀ i, j ∈ {1, 2, 3} ,

where the Kronecker symbol δij equals 1 for i = j and 0 for i 6= j and, for the
translation components with respect to the original geometric configuration (that
is, the non-loaded semi-space) ui, uj we have

εij =
1

2
(∂ui/∂xj + ∂uj/∂xi) ∀ i, j ∈ {1, 2, 3} .

Expressing each stress component in the Cauchy equilibrium equations in terms
of the deformation components and these, in turn, in terms of the translation, we
obtain a stationary equation of linear elasticity (without internal loads) in the
following form

(λ1 + λ2)
3∑

k=1

∂2uk/∂xi∂xk + λ1∂
2ui/∂x

2
k = 0 .

The solution to this equation must comply with the initial conditions. In our
case, for the lateral load q(x1, x2, x3) at the border x3 = 0, we would obtain the
equilibrium conditions

σi1 = σi2 = 0 , σi3 = q ,

which could again be expressed in terms of the translation components, however,
formally, q would be zero everywhere except at the points A1, A2, A3 and A4,
while at these points, q would have to tend to infinity. Nevertheless, instead of
P , the load q = P/ω can be considered in the plane x3 = 0 in a sufficiently
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small region with an area of ω and the limit behaviour for ω → ∞ studied.
A mathematically correct approach, however, would require familiarity with the
concepts of the theory of distributions, in particular the Dirac distribution and
Heaviside function, as well as more profound knowledge of the theory of partial
differential equations and their systems. However, from the engineering point of
view, the most important thing is that, for a case similar to ours with a single
load having the components Fi, i ∈ {1, 2, 3} that takes effect at the origin, we
can employ what is termed a Boussinesq solution

ui =
1

4πλ2

3∑

k=1

GikFk ∀i ∈ {1, 2, 3} ,

where

G11 = b/r + x2
1/r

3 − ax2
1/(r(r + x3)2)− ax3/(r(r + x3)) ,

G12 =x1x2/r
3 − ax1x2/(r(r + x3)2) ,

G13 =x1x3/r
3 − ax1/(r(r + x3)) ,

G22 = b/r + x2
2/r

3 − ax2
2/(r(r + x3)2)− ax3/(r(r + x3)) ,

G23 =x2x3/r
3 − ax2/(r(r + x3)) ,

G33 = b/r + x2
3/r

3 ,

r =
√
x2

1 + x2
2 + x2

3 a Gij = Gji for all i, j ∈ {1, 2, 3}.
Because the problem is symmetric and linear (the respective differential

operator is additive and homogeneous, which in engineering mechanics corre-
sponds to principles of adequacy and superposition of effects), we can write
u1(0, 0, h) = u2(0, 0, h) = 0. Then we can choose x1 = x3 = h, x2 = 0,
F1 = F2 = 0 and F3 = P four times only calculating r = h

√
2 and the sub-

sidence

u3(0, 0, h) =
P

πλ2

G33(h, 0, h) =
P

πλ2

(
b

h
√

2
+

h2

2
√

2h3

)

=
b+ 1

2

2
√

2λ2

· P
πh

=
(5− 4µ)(1 + µ)P

4
√

2πEh
.

2.7 The volume and centre of mass of the

pressed concrete area

When concrete structures are sized, problems arise with determining the force
Fcc in the pressed area of a concrete section. This force is, for instance,
determined for what is called the limit state of applicability assuming a linear
stress distribution σc. In the solution, the position of the neutral (zero) axis x,
must be known, that is, the axis with a zero relative deformation εc. This position

———————————————————————————————————



2.7 The volume and centre of mass of the pressed concrete area 31

can be determined by solving the conditions of the equilibrium of the external
and internal forces (force and moment equilibrium condition) either directly or
by iteration. It is in this process that the problem occurs of determining the
force Fcc as the value of stress σc in the pressed concrete region Acc, whose
shape can have an entirely general form, as well as determining the position of
the force Fcc in the pressed section region acc, as the centre of the stress volume σc.

For this particular problem, the section has been chosen in the shape of
a circular ring.

Solution:
The object can be positioned in the system of coordinates so that
- the section plane is parallel, say, to the y-axis
- the z-axis coincides with the axis of the circular ring,

that is,
r2

1 ≤ x2 + y2 ≤ r2
2, 0 ≤ z ≤ kx+ q.
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The cutting plane passing through the point [r2, 0, h] will then be defined by
the equation z = kx + q, k > 0 intersecting the xy-plane in the straight-line
x = −q/k. The centre of mass of the homogeneous object will lie in the xz-plane,
that is, yT = 0.

- x

6

z

|q| = qa−r2

a−r1

a
r1

a
r2

h > 0

a
[r2, o, h]

a
x = − q

k

ρ : z = kx+ q

[r2, o, h] ∈ ρ⇒ h = kr2 + q

k = (h− q)/r2 > 0

We will investigate four section types:

• (A) −q/k < −r2, (B) r1 ≤ −q/k < r2,

• (C) −r2 ≤ −q/k ≤ −r1, (D) −r1 ≤ −q/k ≤ r1.

(A) Type

−q/k < −r2 ⇔ q ≥ kr2 = h− q ⇔ q >
h

2
, q ≤ h

is the simplest one as the integration domain includes the entire circular
ring, which makes it possible to apply the cylindrical coordinates.

- y

?x

r2r1

a−r1

a−r2

&%
'$

x = −q/k ≤ −r2
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The density of a homogeneous body being ρ(x, y, z) ≡ c, we can put c = 1.
without loss of generality.
The integration domain

Ω : r2
1 ≤ x2 + y2 ≤ r2

2, 0 ≤ z ≤ kx+ q

through

x = ρ cosϕ
x = ρ sinϕ
z = z
|J(ρ, ϕ)| = ρ

changes into

Ω1 : r1 ≤ ρ ≤ r2, −π ≤ ϕ ≤ π, 0 ≤ z ≤ kρ cosϕ+ q.

Then, for the mass (numerically, also the volume), we have

m(Ω) =

∫∫∫

Ω

dxdydz =

∫∫∫

Ω1

|J(ρ, ϕ)|dρdϕdz =

=

∫ r2

r1

ρdρ

∫ π

−pi
dϕ

∫ kρ cosϕ+q

0

dz = qπ · (r2
2 − r2

1),

and, for the static moments with respect to the coordinate axes,

Syz(Ω) =

∫∫∫

Ω

x dxdydz =
1

4
kπ · (r2

2 − r2
1)(r2

2 + r2
1),

Sxz(Ω) =

∫∫∫

Ω

y dxdydz = 0,

Sxy(Ω) =

∫∫∫

Ω

z dxdydz =
π

8
· (r2

2 − r2
1) · (k2(r2

1 + r2
2) + 4q2).

Therefore, the resulting centre of mass has the following coordinates

T =

[
Syz(Ω)

m(Ω)
,
Sxz(Ω)

m(Ω)
,
Sxy(Ω)

m(Ω)

]
=

[
k

4q
(r2

1 + r2
2), 0,

k2

8q
(r2

1 + r2
2) +

q

2

]

for q/k ≥ r2 (tj., q > h/2).

(B) We will investigate the case r1 ≤ −q/k < r2.
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?x

r2r1a
r1

ar2

&%
'$

r1 ≤ −q/k < r2

For a constant a > 0, first define functions F0, F1, F2 to simplify the
notation of the integration results:

F0(x, a) = 1
2
x
√
a2 − x2 + 1

2
a2arctg x√

a2−x2 (+const =
∫ √

a2 − x2 dx),

F1(x, a) = −1
3
(
√
a2 − x2)3 (+const =

∫
x
√
a2 − x2 dx),

F2(x, a) = −1
4
x(
√
a2 − x2)3 + 1

8
a2x
√
a2 − x2 + 1

8
a4arctg x√

a2−x2

(+const =
∫
x2
√
a2 − x2 dx).

(2.1)
Then the conditions

F0(−x, a) = −F0(x, a), F0(a, a) = 1
4
πa2 = −F0(−a, a),

F1(−x, a) = F1(x, a), F1(a, a) = 0 = F1(−a, a),
F2(−x, a) = −F1(x, a), F2(a, a) = 1

16
πa4 = −F2(−a, a).

(2.2)

are fulfilled. Now, the integration domain is

Ω : − q
k
≤ x ≤ r2, −

√
r2

2 − x2 ≤ y ≤
√
r2

2 − x2, 0 ≤ z ≤ kx+ q.

Calculating, we obtain

m(Ω) =

∫∫∫

Ω

dxdydz =

∫ r2

−q/k
dx

∫ √r2
2−x2

−
√
r2
2−x2

dy

∫ kx+q

0

dz =

= 2

∫ r2

−q/k
(kx+ q)

√
r2

2 − x2dx = [2kF1(x, r2) + 2qF0(x, r2)]r2−q/k =

=
1

2
πqr2 − 2kF1(

q

k
, r2) + 2qF0(

q

k
, r2),

Syz(Ω) =

∫∫∫

Ω

x dxdydz = 2

∫ r2

−q/k
x(kx+ q)

√
r2

2 − x2dx =
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= [2kF2(x, r2) + 2qF1(x, r2)]r2−q/k =
1

8
kπr4

2 + 2kF2(
q

k
, r2)− 2qF1(

q

k
, r2),

Sxz(Ω) =

∫∫∫

Ω

y dxdydz = 0,

Sxy(Ω) =

∫∫∫

Ω

z dxdydz =

∫ r2

−q/k
(kx2 + 2kqx+ q2)

√
r2

2 − x2dx =

=
[
k2F2(x, r2) + 2kqF1(x, r2) + q2F0(x, r2)

]r2
−q/k =

=
1

16
πr2

2(k2r2
2 + 4q2) + q2F0(

q

k
, r2)− 2kqF1(

q

k
, r2) + k2F2(

q

k
, r2).

To determine the centre of mass coordinates in this and subsequent cases,
suitable computer programs are needed with a spreadsheet such as Excel
being sufficient.

(C) The case −r2 ≤ −q/k ≤ −r1 can be solved by combining the previous
procedures using the difference of integrals.

- y

?x

r2r1

a−r1

a−r2

&%
'$−r2 ≤ −q/k ≤ −r1

The integration domain Ω = Ω1 − Ω2 where

Ω1 : r2
1 ≤ x2 + y2 ≤ r2

2, 0 ≤ z ≤ kx+ q,

Ω2 : −r2 ≤ x ≤ − q
k
, −
√
r2

2 − x2 ≤ y ≤
√
r2

2 − x2, 0 ≤ z ≤ kx+ q.

Then

m(Ω) = m(Ω1)−
∫∫∫

Ω2

dxdydz =

= qπ(r2
2 − r2

1) + [2kF1(x, r2) + 2qF0(x, r2)]−r2−q/k =
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= qπ(r2
2 − r2

1)− 1

2
qπr2

2 + 2qF0(
q

k
, r2)− 2kF1(

q

k
, r2)

and, similarly,

Syz(Ω) =
1

4
kπ · (r4

2 − r4
1) + [2kF2(x, r2) + 2qF1(x, r2)]−r2−q/k =

=
1

4
kπ · (r4

2 − r4
1)− 1

8
kπr4

2 + 2kF2(
q

k
, r2)− 2qF1(

q

k
, r2),

Sxz(Ω) = 0,

Sxy(Ω) =
π

8
· (r2

2 − r2
1) · (k2(r2

1 + r2
2) + 4q2)+

+
[
k2F2(x, r2) + 2kqF1(x, r2) + q2F0(x, r2)

]−r2
−q/k =

=
π

8
· (r2

2 − r2
1) · (k2(r2

1 + r2
2) + 4q2)− 1

16
πk2r4

2 −
1

4
πq2r2

2+

+k2F2(
q

k
, r2)− 2kqF1(

q

k
, r2) + q2F0(

q

k
, r2).

(D) The last case −r1 ≤ −q/k ≤ r1

- y

?x

r2r1

a−r1

a−r2

a
r1
&%
'$−r1 ≤ −q/k ≤ r1

can be solved by integrating over Ω = Ω1 − Ω2 where

Ω1 : − q
k
≤ x ≤ r2, −

√
r2

2 − x2 ≤ y ≤
√
r2

2 − x2, 0 ≤ z ≤ kx+ q,

Ω2 : − q
k
≤ x ≤ r1, −

√
r2

2 − x2 ≤ y ≤
√
r2

2 − x2, 0 ≤ z ≤ kx+ q,

with the following results:

m(Ω) =

∫∫∫

Ω1

dxdydz −
∫∫∫

Ω2

dxdydz =
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= 2

∫ r2

−q/k
(kx+ q)

√
r2

2 − x2dx− 2

∫ r1

−q/k
(kx+ q)

√
r2

1 − x2dx =

= [2kF1(x, r2) + 2qF0(x, r2)]r2−q/k − [2kF1(x, r1) + 2qF0(x, r1)]r1−q/k =

=
1

2
πq(r2

2 − r2
1) + 2q

(
F0(

q

k
, r2)− F0(

q

k
, r1)

)
− 2k

(
F1(

q

k
, r2)− F1(

q

k
, r1)

)
,

Syz(Ω) = [2kF2(x, r2) + 2qF1(x, r2)]r2−q/k − [2kF2(x, r1) + 2qF1(x, r1)]r1−q/k =

=
1

8
kπ(r4

2 − r4
1) + 2k

(
F2(

q

k
, r2)− F2(

q

k
, r1)

)
− 2q

(
F1(

q

k
, r2)− F1(

q

k
, r1)

)
,

Syz(Ω) = 0,

Sxy(Ω) =
[
k2F2(x, r2) + 2kqF1(x, r2) + q2F0(x, r2)

]r2
−q/k−

− [k2F2(x, r1) + 2kqF1(x, r1) + q2F0(x, r1)
]r1
−q/k =

=
1

16
k2π(r4

2 − r4
1) +

1

4
πq2(r2

2 − r2
1) + k2

(
F2(

q

k
, r2)− F2(

q

k
, r1)

)
−

−2kq
(
F1(

q

k
, r2)− F1(

q

k
, r1)

)
+ q2

(
F0(

q

k
, r2)− F0(

q

k
, r1)

)
.

Thus, we have described all the types providing the necessary formulas.

2.8 Optimizing concrete mix by Feret

Design a procedure for the maximum-saving concrete-mixture design to be used for
a concrete column with a constant section a given height of l that is axially stressed
by a total compressive force of N , knowing the local gravitational acceleration g.
For calculating the strength, use the empiric Feret formula with a known strength
constant. Consider that the concrete density is linearly dependent on the strength.
Assume that the concrete volume unit price α and the aggregate volume unit
price β (taken to be the average of all the fractions used in a constant ratio) are
known; ignoring the price of water and air. Prescribed are the limits c1 and c2

(0 < c1 < c2 < 1) for the cement content per mixture unit and the limits ν1 and
ν2 (0 < ν1 < ν2) for the volume proportion of water and cement per mixture unit,
guaranteeing that the column will bear more than its own weight.

Solution: Denote by c, s and w numbers from the interval 〈0, 1〉, indicating
the cement, aggregate, and water (including steam and other gases) content re-
spectively per mixture volume unit; clearly, c + s + w = 1. The price of the
mixture needed for a unit of the column height is

P = (αc+ βs)A ,
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(the total mixture price totalling to Pl) where A is the (not previously known)
area of the column section. The compressive stress σ in the column linearly
changes with its height; obviously, we have

N

A
≤ σ ≤ N

A
+ ρgl .

Denote ν = w/c. Knowing the positive strength constant ψ, by Feret, we can
calculate the resulting concrete compressive strength

κ =
ψ

(1 + ν)2
.

Generally, we require σ ≤ κ; so the most economical option is

κ =
N

A
+ ρgl .

As we know the linear dependence of ρ on κ, we can write with economy

ρgl = γ0 + γ1κ ,

where γ0 and γ1 are known constants always positive in practice. For the column
to bear more than its own height, κ > glρ must be true and thus

(1− γ1)ψ

N(1 + ν2)2
− γ0

N
> 0 ;

then, clearly, γ1 < 1 and, with the denotation

λ0 =
γ0

N
, λ1 =

(1− γ1)ψ

N

also

λ0 ≤ λ1

(1 + ν2)2

with a simple imlication λ0 < λ1.
For the actual load, we get

N

A
=

ψ

(1 + ν)2
− ρgl =

ψ

(1 + ν)2
− ρgl =

(1− γ1)ψ

(1 + ν)2
− γ0 ,

which implies

A = N

(
(1− γ1)ψ

(1 + ν)2
− γ0

)−1

=

(
λ1

(1 + ν)2
− λ0

)−1

.

Since s = 1− c− w and w = cν, we finally obtain

P = (αc+ βs)Q−1 = (β + (α− β)c− βcν)Q−1 ,
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with a concise denotation

Q =
λ1

(1 + ν)2
− λ0 ,

as a function of two variables c and ν on the domain Ω = 〈c1, c2〉 × 〈ν1, ν2〉. Its
partial derivatives ∂P/∂c and ∂P/∂ν can be written in the form (arranged in
a way suitable for further investigation)

Q∂P/∂c = α− β − βν ,
Q(1 + ν3)

β
∂P/∂ν =

(
λ0ν

3 + 3λ0ν
2 + 3(λ0 − λ1)ν + (λ0 − 3λ1 + 2λ1

α

β

)
c

+ 2λ1 .

If we put ∂P/∂c = 0, we can use the frst equation to calculate c, and, if we put
∂P/∂ν = 0, we can use the first equation to also calculate ν. Thus the function
P has a single stationary point A∗ = [c∗, ν∗] (provided that it falls into Ω)

c∗ =
2λ1

λ0 + λ1(2ξ − 3) + 3(λ1 − λ0)(ξ − 1)− 3λ0(ξ − 1)2(ξ + 2)
,

ν∗ = ξ − 1 .

However, at the stationary point A∗ = [c∗, ν∗] thus obtained, the function
P does not have to achieve its absolute minimum. The vertices A1 = [c1, ν1],
A2 = [c1, ν2], A3 = [c2, ν1], A4 = [c2, ν2] and the stationary points of the line seg-
ments A1A2 and A3A4 have to be considered separately; not on the line segments
A2A3 and A1A4 because, here, P is only a linear function of c. Non-trivial is only
the analysis of the behaviour of P for c = ci, i ∈ {1, 2} where we have

(
λ0ν

3 + 3λ0ν
2 + 3(λ0 − λ1)ν + λ0 − 3λ1 + 2λ1ξ

)
ci + 2λ1 = 0 ,

which is a cubic algebraic equation to be used to calculate (one to three) solutions
ν. In the special case λ0 = 0 (that is, γ0 = 0) we get a unique solution

νi∗ =
2

ci
− 3 + 2ξ ;

so next we can only work with λ0 > 0 introducing the notation η = λ1/λ0 and
rewriting the cubic equation as

ν3 + 3ν2 + 3(1− η)ν + 1− 3η + 2ηξ +
ξ

ci
= 0 .

The cubstitution µ = ν − 1 then yields

µ3 − 3ηµ+ 2η

(
ξ +

1

ci

)
= 0 .
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The three potential solutions (some of them may not be real or belong to
the interval 〈ν1, ν2〉) can be obtained using the Cardano formula µi∗ = u + v,
µi∗ = ε1u+ ε2v or µi∗ = ε2u+ ε1v where always

u =

√
−q +

√
q2 − η3 , v =

√
−q −

√
q2 − η3 , q = η

(
ξ +

1

ci

)
,

ε1 = −1

2
+ i

√
2

2
, ε1 = −1

2
− i
√

2

2
;

finally, it is sufficient to calculate νi∗ = µi∗ + 1. However, the choice of the
solutions is limited: the Cardano formulas, for example, imply that the sum of
the three real solutions should be equal to −3 (that is, to the coefficient of ν2 in
the original equation), which is not possible for ν ≥ ν1 > 0. Therefore, for each
i ∈ {1, 2}, mark only A1

i∗ and A2
i∗ as the two potential stationary points [ui∗, νi∗].

Determining the character of the stationary points by considering the second
(or higher) derivatives of P would be too tedious and is not necessary in this
case. It is sufficient to check on the values of P (A) at the points

A ∈ {A∗, A1
1∗, A

2
1∗, A

1
2∗, A

2
2∗, A1, A2, A3, A4}

for the smallest one (which, generally, may not be unique). Such a point A = [c, ν]
then represents the most saving mixture design defined by the three values

(c, s, w) = (c, 1− c(ν + 1), cν) .

2.9 Free oscillation of a pole

Using Kirchhoff’s theory, estimate the maximum bending of the top of an ideally
fixed steel pole with a height of l, a constant section with an area of A if the
pole is oscillating freely and laterally due a static lateral load P at the pole top
suddenly disappearing. The positive modulus of elasticity E, the density ρ, and
the inertia moment J of the material are known. Use the finite-element-method
with an equidistant partition of the height l; perform the calculation for a four-step
partition.

Solution: Denote by w(x, t) the bending of the pole for x ∈ 〈0, l〉 and t ≥ 0,
with w(0, t) = 0 and w′(0, t) = 0 at the fixed point, By Kirchhoff’s theory, the
equilibrium condition can be written as

ρAẅ + EJw′′′′ = 0 ;

here, primes denote differentiation by x, dots by t. Nevertheless, to determine
the initial bending of the pole, it is sufficient to consider w being only dependent
on x using the equation

M = −EJw′′ ,
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as this is a statically determinate beam with a known bending moment

M = P (x− l) .

Particularly for P = 0, w∗ = 0 everywhere with no resulting oscillation. Without
loss of generality, we can assume P > 0; the reason is that, for P < 0, we would
obtain the same w as for −P only with an opposite sign.

Denote

α =

√
EJ

ρA
, β =

P

6EJ
.

Directly integrating the equation

w′′ = −6β(x− l),

we obtain

w′ = −3β(x− l)2 + C1 , w = −β(x− l)3 + C1(x− l) + C0 ,

where the constants C1 and C0 can be calculated from the initial conditions at
the fixed point w′(0) = 0 and w(0) = 0 with the result

C1 = 3βl2 , C0 = 2βl3 .

Thus we have

w = β
(
2l3 − 3l2(l − x) + (l − x)3

)
= βx2(3l − x) ;

this static deviation (unlike the generally dynamic deviation w) will further be
denoted by w0. Then, clearly, w0(x) = w(x, 0) for any point x and the original
equilibrium condition can be written as

ẅ = −α2w′′′′ .

We will search for a solution to this partial differential equation in the form

w(x, t) =
n∑
i=1

ϕi(x)ψi(t)

for a sufficiently large n (theoretically n → ∞) and a suitable system of testing
functions ϕi in 〈0, l〉 with the property ϕi(0) = 0 a ϕ′i(0) = 0; the functions ψi in
〈0,∞) will be calculated from a certain system of ordinary differential equations.
Denoting

(v, u) =

∫ l

0

v(x)u(x) dx , [v, u] = v(l)u(l)− v(0)u(0) ,
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with v ∈ {ϕ1, . . . , ϕn} and u being a function of the variable x, which can also
depend on time, integrating by parts, we obtain

(v, ẅ) = −α2(v, w′′′′) = α2(v′, w′′′)− α2[v, w′′′]

= −α2(v′′, w′′)− α2[v, w′′′] + α2[v′, w′′] .

Since, however, v(0) = 0, v′(0) = 0, w′′(0) is proportionate to the bending
moment at the free end of the unloaded pole and w′′′(0) is proportionate the the
translating force at the same point, so that w′′(0) = 0 and w′′′(0) = 0, we have
only

(v, ẅ) = −α2(v′′, w′′) .

Selecting now v = ϕj for j ∈ {1, . . . , n}, respectively, we get

n∑
i=1

(ϕj, ϕi)ψ̈i = α2

n∑
i=1

(ϕ′′j , ϕ
′′
i )ψi ,

which can be written in a matrix form

Mψ̈ = −α2Kψ ,

where the mass matrix M consists of the entries (ϕj, ϕi) and a rigidity matrix K
consists of the entries (ϕj, ϕi); we aim to determine the column vector ψ, which
is formed by the entries ψi.

For an even n, partition now the the interval 〈0, l〉 into n/2 subintervals
〈(j − 1)h, jh〉 where h = 2l/n and j ∈ {1, . . . , n}, respectively. Denote
ξ = (x− (j − 1)h)/h and consider a function

ϕ̃L(ξ) = 1− 3ξ2 + 2ξ3 , ϕ̃R(ξ) = 3ξ2 − 2ξ3 ,

ϕ̂L(ξ) = ξ − 2ξ2 + ξ3 , ϕ̂R(ξ) = −ξ2 + ξ3 ,

with L = j−1 and R = j. These functions, which can easily be derived using the
Newton form of a Hermit cubic interpolation polynomial in 〈(j − 1)h, jh〉, have
the properties ϕ̃L(0) = ϕ̃R(1) = hϕ̂L(0) = hϕ̂L(l) = 1 while all their remaining
values for ξ ∈ {0, 1} are zero. If we further restricted ourselves to the interval
〈(j − 1)h, jh〉 rather than 〈0, l〉, we would, by merely integrating polynomials,
obtain (even though after some effort)

M =
h

420

[
M1 M0

MT
0 M2

]
, K =

2

h3

[
K1 K0

KT
0 K2

]
,

where

M1 =

[
156 22
22 4

]
, M2 =

[
156 −22
−22 4

]
, M0 =

[
54 −13
13 −3

]
,
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K1 =

[
6 3
3 2

]
, K2 =

[
6 −3
−3 2

]
, K0 =

[ −6 3
−3 1

]

(the non-diagonal entries in the sums M1 +M2 and K1 +K2 will disappear).
For x ∈ 〈(j − 1)h, jh〉, we clearly have for even j ∈ {2, . . . , n}

ϕj−1(ξ) = ϕ̃R(ξ) , ϕj(ξ) = hϕ̂R(ξ)

and similarly, for x ∈ 〈jh, (j + 1)h〉 if j < n

ϕj−1(ξ − 1) = ϕ̃L(ξ − 1) , ϕj(ξ − 1) = hϕ̂L(ξ − 1) ;

in both cases then

w0(ξ) = h3(ξ − s+ 1)2

(
3l

h
− ξ + s− 1

)
= h3(ξ − s+ 1)2

(n
2
− ξ + s− 1

)
.

Generalizing this procedure, we obtain the band matrices

M =
h

420




M1 M0

MT
0 M1 +M2

. . .
M1 +M2 M0

MT
0 M2



,

K =
2

h3




K1 K0

KT
0 K1 +K2

. . .
K1 +K2 K0

KT
0 K2




for the vector ϕ with 2n entries.
We will now try to find the vector ψ in the form

ψ(t) = V E1(t)a+ V E2(t)b ,

where a and b are column vectors of yet unknown constants, Λt is a diagonal
square matrix and V is a square n by n matrix, E1(t) and E2(t) are order n matri-
ces consisting of the entries cos(Λiit) and sin(Λiit), respectively, for i ∈ {1, . . . , n}
with

MV Λ2 = α2KV ,

that is, V is the matrix of the eigenvectors of the matrix M−1K and Λ2 is the
matrix of the eigenvalues of the same matrix. This is because

ψ̇(t) = V ΛE1(t)a+ V ΛE2(t)b , ψ̈(t) = −V Λ2E1(t)a− V Λ2E2(t)b ,

so that
MV Λ2E1(t)a+MV Λ2E2(t)b = KV E1(t)a+KV E2(t)b .

———————————————————————————————————



44 Advanced problems

Moreover, by the nature of the problem, we can expect Λ2
ii > 0 for all

i ∈ {1, . . . , n}, and so Λii > 0 can also be chosen, which means that complex
numbers do not have be considered; however, a more thorough qualitative anal-
ysis would require more space not available here. This should also be noted to
the efficiency of an algorithm used to determine V and Λ2: even if M and K are
band matrices, generally, V is a full matrix and, moreover, the inverse to V is
needed, too; with a small n, however, we could succesfully use a repeated power
method. In this example, (see further) the eig MATLAB function was used to
numerically calculate V and Λ2.

Next denote by f the column vector of the entries (ϕj, w0) for j ∈ {1, . . . , n}.
As E1(0) and E2(0) are zero matrices, we have

ψ(0) = V (a+ b) , ψ̇(0) = V (b− a) ;

but, at the same time, Mψ(0) = f and ψ̇(0) must be a zero vector so that we get

a = b =
1

2
M−1V −1f .

Denoting E = (E1 + E2)/2 yields

ψ(t) = V E(t)V −1M−1f

and, finaly,
w(x, t) = ϕT (x)V E(t)V −1M−1f .

For the numerical calculation, denote further M̄ = 420M/h and K̄ = Kh3/2.
Then V Λ2 = 210h2M̄−1K̄V . The matrix V of the eigenvectors can be determined
for the matrix M̄−1K̄ seemingly independently of h (actually n = l/(2h)), the
matrix Λ of the eigenvalues obtained in the same way must be multiplied by√

210h. For n = 4, we have

M̄ =




312 0 54 −13
0 8 13 −3

54 13 312 0 54 −13
−13 −3 0 8 13 −3

54 13 312 0 54 −13
−13 −3 0 8 13 −3

54 13 156 22
−13 −3 22 4




,

K̄ =




12 0 −6 3
0 4 −3 1
−6 −3 12 0 −6 3

3 1 0 4 −3 1
−6 −3 12 0 −6 3

3 1 0 4 −3 1
−6 −3 6 3

3 1 3 2




.
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Integrating the polynomials analytically (simple but tedious, which can be im-
proved using, for example, MAPLE or the MATLAB symbolic toolbox, yields

210

βh2
f = [2562 290 8968 500 17094 626 11935, 5−1906]T .

The matrix V containing columns of the pole eigenshapes can be determined
numerically: The odd rows contain the respective deviations at the points
x ∈ {h, 2h, 3h, l}, the even rows then the respective rotations; here, the
MATLAB eig function was used. The figure shows the eigenshapes found,
corresponding to the eigenvalues sorted in descending order: first the contin-
uous black, red, blue, and green lines are taken, then the dotted black, red,
blue, and green lines. We do not include here the numerical results for Λ,
V , V −1 a V −1M−1f because they are too many and unclear if published in
the text form; the way thy are obtained is the same. Now the entire problem
has been reduced to substituting the input values into a simple algebraic formula.
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The problem solution is clearly periodic, which does not correspond with the
actual situation as observed: once devoid of the load, the pole eventually returns
to the original position. The reason for this is that the pole has been idealized
as a closed system not communicating with its environment while the energy
(except for the potential and kinetic energy included in the model) actually
dissipates into the surrounding environment particularly that transformed
into heat through friction with the air. Under the simplest assumption of
a proportional damping, the term Mψ̈ can be replaced by the term Mψ̈ + ςMψ̇
where ς is a positive constant, which will force a gradual dampening down of the
movement; more realistic models use more complex, mostly non-linear terms.

2.10 Transition curve for a road

Design a transition curve for a road route passing from a straight line to a circular
arc knowing the distance from the straight line to the circular arc h and the arc
radius r. Use a cubic parabola for the transition curve. Ignore any changes in
the elevation along the route.

Solution: Denote by γ the transition curve to be found, by k̃ the circle, and
by p the straight line given. Choose Cartesian coordinates such that the point
S = [0, r] is the centre of k, the point A = [−l,−h] lies at the intersection of
p and γ, and the point B = [b, r − √r2 − b2] lies at the intersection of k̃ and
γ; clearly, the point B is on the semicircle k ⊂ k̃ such that y ≤ r. We need to
determine the remaining coordinates with unknown parameters b and l and an
equation of γ containing another unknown parameter a.

First set up equations of the lines p, k, and γ in the form y = ϕ(x) where
ϕ are certain real functions with first and second derivatives needed to calculate
the curvatures

κ =
y′′√

(1 + y′2)3
.

Thus, for p, we have

y = −h , y′ = 0 , y′′ = 0 , κ = 0 ,

for k,

y = r −
√
r2 − x2 , y′ =

x√
r2 − x2

, y′′ =
r2

√
(r2 − x2)3

, κ =
1

r

and, for γ,

y + h = a(x+ l)3 , y′ = 3a(x+ l)2 , y′′ = 6a(x+ l) ,

———————————————————————————————————



2.10 Transition curve for a road 47

κ =
6a(x+ l)√

(1 + 9a2(x+ l)4)3
.

As, at the point A, both for p i γ, we always have

y(−l) = −h , y′(−l) = 0 , y′(−l) = 0 , κ(−l) = 0 ,

all we need to do is ensure the continuity of y, y′, and κ at B by suitably setting
the parameters a, b, and l.

The conditions of continuity for y, y′, and κ at B, based on the equations γ
and k are

a(b+ l)3 = h+ r −
√
r2 − b2 , 3a(b+ l)2 =

b√
r2 − b2

,

6a(b+ l)√
(1 + 9a2(b+ l)4)3

=
1

r
.

respectively. Using the first condition, we can write

a =
h+ r −√r2 − b2

(b+ l)3
,

and, by comparing the first and second conditions, also

l =
3
√
r2 − b2

(
h+ b−√r2 − b2

)

b
− b .

Thus, theoretically, we can already express l and a in terms of b. Subsequently,
we have to calculate b using the third condition, which can be written as

36a2(b+ l)2r2 =
(
1 + 9a2(b+ l)4

)3
.

In this way, we obtain a single equation for the last unknown parameter b, which
is, however, rather complicated so that we cannot find its analytical solution.
Moreover, by a more detailed analysis, we would find that a solution might not
be unique or exist in the real domain.

If a reasonable estimate b exists, however, we can try to find a numerical
approximation to our engineering problem using Newton’s method of tangent
lines. We solve a formal equation f(b) = 0 where

f(b) = 36a2(b+ l)2r2 − (1 + 9a2(b+ l)4
)3

and l and a are already known (rather complex) functions of b. The algorithm
based on the iteration scheme

b← b− f(b)/f ′(b) ,

is clear from the below MATLAB code:
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% cpar (C) J.V.09

% run example: rn=80;hn=1;cpar

%

syms r h b

l=3*sqrt(r^2-b^2)*(h+r-sqrt(r^2-b^2))/b-b;

a=(h+r-sqrt(r^2-b^2))/(b+l)^3;

f=36*a^2*(b+l)^2*r^2-(1+9*a^2*(b+l)^4)^3;

df=diff(f,b);

%

fil=fopen(’cparf.m’,’w’);

fprintf(fil,’fe=%s;\ndfe=%s;\n;’,char(f),char(df));

fclose(fil);

%

if exist(’rn’,’var’), r=rn; else r=80; end

if exist(’hn’,’var’), h=hn; else h=1; end

b=r*cos(pi/4); it=0; err=Inf;

%

while abs(err)>1e-6

if it, cparf; bn=b-fe/dfe;

if bn<0, bn=0; elseif bn>r, bn=r; end

err=bn-b; b=bn; end

l=3*sqrt(r^2-b^2)*(h+r-sqrt(r^2-b^2))/b-b;

a=(h+r-sqrt(r^2-b^2))/(b+l)^3;

%

xa=-r:r/100:r; ya=r-sqrt(r^2-xa.^2);

xb=[-r,r]; yb=[-h,-h];

xi=-l:(b+l)/100:b; yi=a*(xi+l).^3-h;

plot(xa,ya,’b’,xb,yb,’b’,xi,yi,’r’,...

b,r-sqrt(r^2-b^2),’rx’,-l,-h,’rx’);

buf=sprintf(’%d.iterace: a=%g b=%g?%g l=%g’,...

it,a,b,err,l);

title(buf); pause

it=it+1; end

%

print cparf.jpg -djpeg90
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Here, the rather rough estimate b = r/
√

2 is taken for a basis with the relative
error b between the last two iteration steps being tolerated up to 10−6. The
derivative of f ′ is determined formally using the diff function of the MATLAB
symbolic toolbox. During the calculation, each iteration is animated. A sample
result for r = 80 and h = 1 (after the eighth iteration step) is shown by the above
figure.

2.11 Discharge through an orifice in a vertical

wall

Determine the maximum Q1 and minimum Q2 discharge through an elliptic orifice
with an area of A in a vertical wall. The orifice is completely beneath the water
level with one of the semi-axes being vertical and the other horizontal. The orifice
and the water are subject to identical pressures and the effect of the feeding rate
can be neglected. The height of the water level above the centre of the orifice is h,
the gravitational acceleration is g, the funnelling coefficient is ε, and the discharge
rate is ϕ.

Solution: In the vertical wall, we will position Cartesian coordinates (x, y) so
that the y-axis is vertical and the origin coincides with the centre of the orifice.

———————————————————————————————————



50 Advanced problems

In this coordinate system, the elliptic orifice Ω is defined by the inequation
(x
a

)2

+
(y
b

)2

≤ 1 ,

with a and b being the ellipse semi-axes (which of them is major and which minor
is irrelevant). According to the problem definition, moreover, A = πab and b ≤ h.

For the discharge rate v, which is a function of y, under the conservation-
of-energy law, (particularly, concerning the transformation of energy from the
potential to the kinetic form), we have

1

2

(
v(y)

ϕ

)2

= g(h− y) ,

which can be written as
v(y) = ϕ

√
2g(h− y) ,

The above equation was described (for ϕ = 1) by J. E. Toricelli as early as 17th
century. The total discharge through the orifice is then

Q =

∫ ∫

Ω

v(y) dx dy ,

and, after denoting c = εϕ
√

2g,

Q =
2ca

b

∫ b

−b

√
h− y

√
b2 − y2 dy = 2ca

√
h

∫ b

−b

√
1− y

h

√
1− y2

b2
dy .

Denote, finally, ξ = b/h; if the entire orifice is to be below the water level, then
ξ ∈ 〈0, 1〉. Using the substitution y = b cosψ, we obtain

Q = 2cab
√
h

∫ π

0

√
1− ξ cosψ sin2ψ dψ

=
2cA
√
h

π

∫ π

0

√
1− ξ cosψ sin2ψ dψ .

Generally, this integral cannot be expressed in an analytic form; even in the
special case of a circle a = b (or A = πb2), the solution involves elliptic integrals.
Nevertheless, one can see that it is decreasing using numeric integration such as
that implemented by a simple MATLAB cycle:

syms psi; n=10;

for k=0:n, xi=k/n; k1=k+1;

g=sqrt(1-xi*cos(psi))*sin(psi)^2;

I=double(int(g,psi,0,pi));

fprintf(1,’\nxi=%d I=%d g=%s’,xi,I,char(g));

xa(k1)=xi; ya(k1)=I; end

plot(xa,ya);
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Here, the discharge Q only differs from the function g by being multiplied by
a positive constant 2cA

√
h/π.

The fact that Q is a decreasing function of ξ can also be proved analytically
without numeric integration. The function

g(ξ) =

∫ π

0

√
1− ξ cosψ sin2ψ dψ

has a derivative by ξ

g′(ξ) =
1

2

∫ π

0

cosψ sin2ψ√
1− ξ cosψ

dψ = −1

2

∫ π

0

sinψ sin(2ψ)√
1− ξ cosψ

dψ .

The resulting integral can formally be split into two integrals: the first one taken
from 0 to π/2 while the second one from π/2 to π, with the second one, subse-
quently, solved using the substitution ς = π − ψ. This results in

g′(ξ) = −1

2

∫ π/2

0

sinψ sin(2ψ)√
1− ξ cosψ

dψ +
1

2

∫ π/2

0

sin ς sin(2ς)√
1 + ξ cos ς

dς .

Adding these two integrals again yields

g′(ξ) = −1

2

∫ π/2

0

sinψ sin(2ψ)

(
1√

1− ξ cosψ
− 1√

1 + ξ cosψ

)
dψ .

However, since all the three terms to be integrated are positive within the inte-
gration domain for any ξ ∈ 〈0, 1〉, g′(ξ) < 0 is implied, which means that g is
decreasing.

Clearly, the minimum discharge Q corresponds to the largest possible ξ = 1.
Thus, we obtain

Q1 =
2cA
√
h

π

∫ π

0

√
1− cosψ sin2ψ dψ ,

by further substitution ψ = 2ω, then,

Q1 =
4cA
√

2h

π

∫ π/2

0

sinω sin2(2ω) dω

=
16cA

√
2h

π

∫ π/2

0

sin3ω cos2ω dω

and finally, substituting cosω = t,

Q1 =
16cA

√
2h

π

∫ 1

0

(
1− t2) t2 dt =

16cA
√

2h

π

[
t3

3
− t5

5

]1

0

=
32cA

√
2h

15π

≈ 0, 96033740390091 cA
√
h .

———————————————————————————————————



52 Advanced problems

Clearly, the maximum discharge Q corresponds to the smallest possible ξ = 0.
Although this cannot be implemented technically in a precise way, the result

Q2 =
2cA
√
h

π

∫ π

0

sin2ψ dψ =
cA
√
h

π

∫ π

0

(1− cos(2ψ)) dψ

=
cA
√
h

π

[
ψ +

1

2
sin(2ψ)

]π

0

= cA
√
h

is the well-known hydraulic formula for the discharge through a small orifice if
h >> b.

2.12 Harmonic oscillator

Consider an oscillator with a mass of m and a stiffness of k. (We can, for example,
picture a body with a mass of m suspended on a spring with a stiffness of k
oscillating about its ballanced position.)

http : //en.wikipedia.org/wiki/Harmonic−oscillator

Use the following denotations

• x(t) – the deviation of the oscillating motion from the balanced position
depending on time t ≥ 0,

• A – maximum deviation of the oscillator
(|x(t)| ≤ A at each moment t),

• T – oscillation period : the smallest period of time in which the deviation
x(t) of the periodic oscillating movement assumes two identical values,

• f = 1/T – frequency, that is, the number of oscillations per second,

• ω = 2πf = 2π/T – radian frequency,

• ϕ(t) = ωt+ ϕ0 – fázi (ϕ(0) = ϕ0 is the initial phase at time t = 0).
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2.12.1 Free harmonics

Based on experiments, the deviation of free harmonics at time t may be written
as

x(t) = A · sinϕ(t) = A · sin (ωt+ ϕ0) (2.3)

with a restoring force being at work. At time t, the restoring force Fd = −kx
is always directed towards the ballanced position and, by the Newton motion
equation, Fd = m · a with an acceleration of a = d2x/dt2. Therefore

m
d2x

dx2
+ kx = 0 (t ≥ 0)

is the differential equation of the motion of a free oscillator. This equation can
be written as

d2x

dx2
+K2x = 0

(
t ≥ 0, K2 =

k

m
> 0

)
. (2.4)

For a solution of (2.4) in the form x = x(t) = eλt (λ ∈ C), the characteristic
equation

λ2 +K2 = 0

has two conjugate complex roots λ1,2 = ±Ki and the functions sinKt, cosKt
form a fundamental system of the solutions of (2.4). Therefore, its general solu-
tion is

x(t) = c1 sinKt+ c2 cosKt = C sin(Kt+ ψ), c1, c2, C, ψ ∈ R. (2.5)

The following is true for the deviation (2.3) of the harmonics

x(t) = A · sinϕ(t) = A · sin (ωt+ ϕ0) = C sin(Kt+ ψ),

therefore,

C = A, K = ω =

√
k

m
, ψ = ϕ0 (2.6)

and the solution of the differential equation (2.4) expresses the harmonics.

Note 2.12.1 Using the second of the equations (2.6), we can determine the
frequency of the oscillation knowing the oscillator’s rigidity and mass.

Note 2.12.2

- The oscillator speed at time t is

v(t) = dx(t)/dt = Aω cos (ωt+ ϕ0).
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Therefore, the oscillator will reach the maximum speed
vmax = |dx(t)/dt|max = Aω at

| cos (ωt+ ϕ0)| = 1⇔ ωt+ ϕ0 = lπ (l ∈ N),

that is, at ballanced positions.

- The oscillator acceleration at time t is

a(t) = dv(t)/dt = −Aω2 sin (ωt+ ϕ0) = −ω2x(t).

Therefore, the maximum acceleration amax = |dv(t)/dt|max = Aω2 is
reached at

| sin (ωt+ ϕ0)| = 1⇔ ωt+ ϕ0 = lπ/2 (l ∈ N),

that is, at the moment of the maximum deviation.

Note 2.12.3 Also time-independent effective values are used to describe an os-
cillator such as its deviation, speed, and acceleration.

For a function y = f(x) square integrable over the interval 〈t1, t2〉 the effective
value is defined by

yef =

√
1

t2 − t1

∫ t2

t1

f 2(t) dt .

In the interval 〈0, T 〉 of the period, we can then determine

x2
ef =

1

T

∫ T

0

A2 sin2(ωt+ ϕ0) dt =
A2

T

∫ T

0

sin2(
2π

T
t+ ϕ0) dt =

=

∣∣∣∣
2π
T
t+ ϕ0 = τ

2π
T
dt = dτ

t 0 T
τ ϕ0 ϕ0 + 2π

∣∣∣∣ =
A2

2π

∫ ϕ0+2π

ϕ0

sin2 τ dτ =

=
A2

4π

∫ ϕ0+2π

ϕ0

(1− cos 2τ) dτ =
A2

8π
[2τ − sin 2τ ]ϕ0+2π

ϕ0
=
A2

2
,

xef =
A√
2
.

In much the same way

v2
ef =

1

T

∫ T

0

A2ω2 cos2(ωt+ ϕ0) dt = ω2 ·
(

1

T

∫ T

0

A2(1− sin2(ωt+ ϕ0)) dt

)
=

= ω2 ·
(
A2

T

∫ T

0

dt− x2
ef

)
= ω2 · (A2 − A2

2
) =

ω2A2

2
,
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vef =
Aω√

2
.

Finally,

a2
ef =

1

T

∫ T

0

A2ω4 sin2(ωt+ ϕ0) dt = ω4x2
ef =

A2ω4

2
,

aef =
Aω2

√
2
.

2.12.2 Damped oscillations

Apart from a restoring force Fd = −kx also a damping force Ft has an effect on
the oscillator. The damping-force vector is usually directly proportionate to the
oscillator speed vector, is oppositely oriented, which gradually dampens down the
oscillation amplitude.

Thus, if we put Ft = −Rm
dx
dt

where Rm is the mechanical resistance, then

Fd + Ft = m · a

is true by Newton’s motion equation. The motion equation of damped oscillations
is then

−kx−Rm
dx

dt
= m

d2x

dt2
, t ≥ 0, tj.,

d2x

dt2
+ 2δ

dx

dt
+ ω2

0x = 0, (2.7)

where δ = Rm/(2m) is a damping coefficient and ω0 =
√
k/m is the oscillator’s

natural frequency.
For damped oscillations, consider the deviation

x(t) = A0f(t) · sinϕ(t) = A0f(t) · sin (ωt+ ϕ0), (2.8)
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where limt→∞ f(t) = 0 is assumed as the amplitude A = A0f(t) decreases. Let
us now solve the equation (2.7). The characteristic equation

λ2 + 2δλ+ ω2
0 = 0

has the roots

λ1,2 =
−2δ ±

√
4δ2 − 4ω2

0

2
= −δ ±

√
δ2 − ω2

0

with three different cases possible.

(ι) If δ < ω0, the the oscillator damping is subcritical, ωd =
√
ω2

0 − δ2 is the
radian frequency of the sub-critical oscillations and λ1,2 = −δ ± ωd · i. In this
case, the general solution to (2.7) will indeed be in the form (2.8),

x(t) = c1e
−δt cosωdt+ c2e

−δt sinωdt = Ce−δt sin (ωdt+ ψ) (c1, c2, C, ψ ∈ R),

where C = A0, f(t) = e−δt, ω = ωd, ψ = ϕ0, that is, the function

x(t) = A0e
−δt · sin (ωdt+ ϕ0)

expresses the deviation of the damped oscillations.

(ιι) If δ = ω0, then the oscillator damping is critical, ωd = 0 and λ1,2 = −δ < 0
is a double real root of the characteristic equation. The general solution to (2.7)
will be in the form

x(t) = c1e
−δt + c2te

−δt (c1, c2 ∈ R)

and cannot express the deviation of damped oscillations (2.8), in this case, there
are no oscillations and, as can easily be seen, limt→∞ x(t) = 0.

(ιιι) Neither are there any damped oscillations if the remaining condition
δ > ω0 is true, that is, the oscillator damping is super-critical. The roots of the
characteristic equation are real and different, the general solution to (2.7) has the
form

x(t) = c1e
(−δ+
√
δ2−ω2

0)t + c2e
(−δ−
√
δ2−ω2

0)t → 0 pro t→∞ (c1, c2 ∈ R).

2.12.3 Forced oscillations

Damped oscillations are effected in the sub-critical case and, their amplitude
decreases with time. If oscillations are to be maintained, an external periodic
actuating force Fb = Fmax sin (ωbt+ ϕ0b) must be added. The actuating force
is repeated with a period of Tb = 2π/ωb and its maximum value is Fmax. In
this way, we get an actuated harmonic oscillator. Oscillations produced in this
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way are called actuated (drived). Like with damped oscillations, we set up the
equation

Fd + Ft + Fb = m · a.
The forced oscillator motion equation is then

−kx−Rm
dx

dt
+ Fmax sin (ωbt+ ϕ0b) = m

d2x

dt2
, t ≥ 0, tj.,

d2x

dt2
+ 2δ

dx

dt
+ ω2

0x =
Fmax
m

sin (ωbt+ ϕ0b), (2.9)

where again δ = Rm/(2m), ω0 =
√
k/m. Mathematically, this is a linear second-

order differential equation with constant coefficients and special right-hand side,
which can be solved using the standard procedure.

(a) First, a general solution is found of the corresponding homogeneous equa-
tion, which corresponds to the motion equation of the damped oscillator and,
therefore, has solution

x̂(t) = A0e
−δt · sin (ωdt+ ϕ0). (2.10)

(b) Assuming a particular solution of the differential equation (2.9) to be in
the form

X(t) = Ab sin (ωbt+ ψ), (2.11)

we receive the condition

Ab(ω
2
0 − ω2

b ) sin (ωbt+ ψ) + 2δAbωb cos (ωbt+ ψ) =
Fmax
m

sin (ωbt+ ϕ0b), (2.12)

differentiating it by time t and simplifying

Ab(ω
2
0 − ω2

b ) cos (ωbt+ ψ)− 2δAbωb sin (ωbt+ ψ) =
Fmax
m

cos (ωbt+ ϕ0b). (2.13)

For example, at t = −ψ/ωb, we have ωbt + ψ = 0 and equations (2.12, 2.13) are
in the form

2δAbωb =
Fmax
m

sin (ϕ0b − ψ), Ab(ω
2
0 − ω2

b ) =
Fmax
m

cos (ϕ0b − ψ).

Hence

(2δAbωb)
2 +

(
Ab(ω

2
0 − ω2

b )
)2

=

(
Fmax
m

)2

, tg (ϕ0b − ψ) =
2δωb

ω2
0 − ω2

b

, tj.,

Ab =
Fmax

m
√

(2δωb)2 + (ω2
0 − ω2

b )
2
, ψ = ϕ0b + arctg

2δωb
ω2

0 − ω2
b

. (2.14)
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(c) The general solution to the motion equation of forced oscillations is the
sum of the general solution to the corresponding homogeneous equation and a
particular solution to the original non-homogeneous equation and, therefore,

x(t) = x̂(t) +X(t) = A0e
−δt · sin (ωdt+ ϕ0) + Ab sin (ωbt+ ψ), (2.15)

where Ab, ψ are determined by conditions (2.14).

———————————————————————————————————
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