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1 Introduction

1.1 What is a numerical analysis

Today, the use of mathematical tools for the solution of problems is non–
replaceable not only in traditional areas like natural or technical sciences,
but also in economy, medicine, social sciences and public administration.

Among a large amount of various definitions of this subject, we propose
the following one: Numerical analysis is a science whose aim is to make the
achievements of ”pure mathematics” applicable for the solution of practical
problems.

According to this definition, numerical analysis is an area characterized
by the purpose and not by the theoretical tools which it is using. The de-
velopment has shown that there exists a limited number of basic tools such
that the most tools of numerical analysis are suitable combinations of them.
In this book, we concentrate on explanation of these basic tools.

A general description of the use of numerical analysis may be as follows.

1. Given problem: To get some ”objective knowledge” about a concrete
natural, technical or social process.

Example 1. Determine the flow of a liquid or a gas, the process of a
chemical reaction, deformation of a body, behaviour of a social group, ...

2. (To create a new or choose an existing) mathematical model: An exact
mathematical description of essential relations determining the given process.

Example 2. Initial– or boundary–value problem for differential equa-
tions, system of equalities or inequalities, a functional, a system of linear or
non–linear algebraic equations, a definite integral, ...

The models are studied by various branches of mathematics which provide
essential information like existence and/or uniqueness of equations and/or
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their qualitative properties. Exceptionally, mostly in more or less trivial
cases, they provide a way how to find solutions of the models.

This is where the numerical analysis begins: We give up the search after
”exact solutions” and concentrate on ”approximate solutions (on approxima-
tions)” and on algorithms for their computation. The result is a so–called

3. Numerical problem or discretization characterized by a uniquely deter-
mined

– finite set of input data

– finite set of output data

– finite sequence of steps transforming the input data to the output data

4. Computations of concrete output data for concrete given input data

A numerical method is a way how to relate discretizations to models,
simplify them and how to transform the given input data to the output data.
Numerical analysis is a branch of mathematics whose aim is to propose new
numerical methods, to study the quality of the old ones and to propose
suitable structures of the input data (preprocessing) and of the output data
(postprocessing). Usually, the quality of a numerical method is determined
by its

– effectivity,

– accurracy,

– robustness.

Numerical analysis is based on linear algebra, calculus, and functional analy-
sis. Moreover, an important part of numerical analysis consists of complexity
of algorithms.

1.2 What is an error

If we solve a practical problem by a numerical method, we have

a) real problem given. We find

b) mathematical model, approximate it by
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c) discretization and arrive at

d) the result

In each of the steps a) – d), another type of error appears: We call the
difference between the exact solution of

a) and b) an error of the model
b) and c) a discretization error (error of the numerical method)
c) and d) a truncation error

The common meaning of errors, i. e. mistakes (leeps, oversights) have
also to be taken into account. The amount of them decreases whenever
the time–schedule of work is planned reasonably, people work under good
conditons, there are good relations between collaborators etc.

1.3 Some basic principles of the numerical analysis

a) Iteration. As the name suggests, it consists of repeating the same
pattern of computation with the aim to improve the accurracy of the
previous approximation. Iterative techniques are used to find roots of
equations, solutions of systems of linear and non–linear equations, and
solutions of differential equations. As an illustration, let us solve the
equation

x = F (x)

for x real and F continuous on <. Solution by iteration consists in
choosing an x0 (starting value) and computing

x1 = F (x0)

x2 = F (x1)
...

xn+1 = F (xn)
...

If this (theoretically) infinite iterative sequence (sequence of consecutive
approximations) has a limit x̂ then

x̂ = lim
n→∞

F (xn) = F ( lim
n→∞

xn) = F (x̂),

so that the limit x̂ is the solution of our equation.
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Example 3. (A quick computation of a square root) For c > 0 and
x 6= 0 real, we have

x2 = c

0 = −x2 + c

0 = (−x +
c

x
)
1

2

x = (x +
c

x
)
1

2
≡ F (x).

The iteration for
√

2 (c = 2), i. e.

x0 = 1.5, xn+1 = (xn +
2

xn

)
1

2
:

n xn

0 1.5
1 1.4167
2 1.414216

and
√

2 = 1.4142141.

b) Local approximation of a complicated function by a linear function

Let us consider the equation f(x) = 0. Graphically, we look after an
intersection of the curve y = f(x) with y = 0. Assume we know
a starting point x0 approximating the solution x̂. We substitute the
curve y = f(x) by its tangent line in the point [x0, f(x0)] and, instead
of the original problem, we find the intersection of this tangent line
with y = 0:

-

6

x

%
%
%
%
%
%
%

qy

Figure 1
y = f(x)

x̂ x1 x0

[x0, f(x0)]
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In combination with iteration, we obtain the popular Newton method:

-
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Figure 2

y = f(x)
x2 x1 x0

[x0, f(x0)]

[x1, f(x1)] q �
�

�
��

If we use a local approximation by secant for the approximation of the
integral

I =
∫ b

a
f(x) dx, i. e.

-

6

x

qqy

q p p p
Figure 3

y = f(x)

x2x1x0 xnxn−1

q q
y0

y1
y2

yn−1

yn

we obtain the numerical problem to compute the sum

T (h) =
h

2

n∑
i=1

(yi−1 + yi).

This numerical method is called a Trapezoidal rule. Later we show that the
error T (h)− I is proportional to h2. The decrease of h means the increase of
the amount of computations. If we want to gain a more exact approximation
more effectively, we can use one of the following two important ideas:

i) We approximate the integrand y(x) locally by a polynomial of a higher
degree.

ii) We use the Trapezoidal rule with two different values of h and apply
extrapolation.

We illustrate the extrapolation only: If we compute T (h) and T (2h) for
example, we obtain

I − T (h) ≈ K · h2, I − T (2h) ≈ K · (2h)2.
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Then
4(I − T (h)) ≈ I − T (2h)

and we obtain
I ≈ (4T (h)− T (2h))/3.

Example 4. Compute the integral
∫ 12
10 f(x) dx for f(x) = x3 and f(x) =

x4 by the Trapezoidal rule. Improve the approximations by extrapolation.

f(x) = x3 f(x)− x4

y(10) 1 000 10 000
y(11) 1 331 14 641
y(12) 1 728 20 736
T (2) 2 728 30 736
T (1) 2 695 30 009

(4T (1)− T (2))/3 2 684 29 766.8
exact value 2 684 29 766.4

Very often, the kernel of the model consists of one or more ordinary or
partial differential equations. To find effective and accurate methods for ap-
proximate solutions of differential problems is thus one of the most important
aims of numerical analysis.

Example 5. (Derivation of an initial–value problem, I.V.P.)

Physical law: The velocity of decay of a radioactive material is propor-
tional to its mass.

If we denote by y(t) the mass of radioactive material at the time t then
we have

y(t+h)−y(t)
h

average velocity of decay

y′(t) = limh→0
y(t+h)−y(t)

h
velocity of decay at time t

The mathematical form of the physical law is now

y′(t) = −k y(t).

Here k > 0 is a constant characterizing the concrete radioactive material. By
separation of variables we obtain

y′

y
= −k

ln |y| = −k t + C

y(t) = Ce−k t (C ∈ < is arbitrary)
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For unicity, it is sufficient to determine the value of mass y(t) for one
value of time t (to add the initial condition). We obtain the I. V. P.

y′(t) = −k y(t), y(a) = y0.

This I. V. P. has an exact solution

y(t) = y0e
−k(t−a).

General form of the I. V. P. is

y′(x) = f(x, y), y(0) = c.

This equation tells us that the slope of y(x) is f(x, y(x)) in any point x.

The most simple numerical method (the Euler method) consists in

• choosing a discretization step h > 0

• taking x0 = 0, x1 = h, x2 = 2h, . . .

• substituting the derivative y′ by a constant between any two consecu-
tive points:

-
x

6y

y0
y1 y2 y3

0 h 2h 3h

Figure 5
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The Euler polygon connects the points [0, y0], [h, y1], [2h, y2], . . . and

y0 = c,
yi+1 − yi

h
= f(xi, yi),

so that

y0 = c, yi+1 = yi + h f(xi, yi), i = 0, 1, . . .

Example 6. Approximate the solution of the I. V. P.

y′ = −0.5y in (0, 1), y(0) = 1.

By the Euler method with steps h = 0.5 and h = 0.25.

For h = 0.5 we have y0 = 1 and yi+1 = yi + 0.5(−0.5yi) = 0.75yi for
i = 0, 1 :

i xi yi

0 0 1
1 0.5 0.75
2 1 0.5625

In the case of h = 0.25 we have y0 = 1 and yi+1 = yi+0.25(−0.5yi) = 0.875yi

for i = 0, 1, 2, 3 :

i xi yi

0 0 1
1 0.25 0.875
2 0.5 0.765625
3 0.75 0.669922
4 1 0.586182

Exact solution y(x) = e−0.5x has exact values y(0.5) = 0.778801 and y(1) =
0.6065307 in the points from the rough mesh. Comparison of the errors in
these points from the following table says that the order of error is propor-
tional to h.

i xi yi − y(xi) y2i − y(x2i)
1 0.5 -0.028801 -0.013176
2 1 -0.044031 -0.020349

In many applications, variable x means time and the differential equation rep-
resents a law controlling the changes of the system being considered. Our ap-
proximate solution then means a numerical simulation of these time–changes.
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2 Error analysis

Definition 1. Let x̃ be the approximation of the exact value x. Then we
denote by

Ex = x− x̃

the (absolute) error, by

Rx =
Ex

x

the relative error, by
ε(x) : |Ex| < ε(x)

an error estimate and by

δ(x) : |Rx| < δ(x)

a relative error estimate.

Remark 1. We of course have

|Ex| < ε(x) ⇐⇒ x ∈ (x̃− ε(x), x̃ + ε(x)) ≡ x = x̃± ε(x).

Example 7. If we approximate the number x = 2.7182818 by x̃ = 2.72
then we have

Ex = x− x̃ = −0.001728, Rx =
Ex

x
= −0.000635294.

In the memories of computers, numbers are stored in the following two basic
ways:

a) floating point mode:

x̃ = ±.d1d2 . . . dk · 10e

is a decimal floating point representation of x with k digits significant
whenever

|x− x̃| < 5 · 10e−k−1.

In the memory,

– the sign ±,

– the mantissa .d1d2 . . . dk ∈ [.10 . . . 0, .99 . . . 9]
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– the integer exponent e ∈ [−L, L]

are saved.

In this mode, non–zero numbers x such that

|x| < 0.1 · 10−L and |x| > 0.99 . . . 9 · 10L

cannot be represented. We speak about an underflow and overflow
respectively.

b) fixed–point mode: Numers are saved with the same number n of digits
to the right from the decimal point.

Example 8. Let x = 21.4976. Then

a) The floating point representation with k = 5 is

x̃ = +0.21498 · 102.

b) The fixed–point representation with n = 0 is

x̃ = 21.

We can see that even the above computer representations x̃ are approxi-
mations of the exact values x. Now, we use the Taylor theorem for the
development of basic laws characterizing the way in which basic arithmetic
operations change the error of this approximation. We first evaluate an ar-
bitrary smooth function

f(x, y)

under the assumption that instead of x, y, we know the approximations

x̃ = x + ∆x, ỹ = y + ∆y.

We have

f(x̃, ỹ) = f(x, y) + ∆x
∂f

∂x
(x, y) + ∆y

∂f

∂y
(x, y)

+
1

2

(
(∆x)2∂2f

∂x2
+ 2∆x∆y

∂2f

∂x∂y
+ (∆y)2∂2f

∂y2

)
(x, y) + . . .

If we assume the values (∆x)2, ∆x∆y and (∆y)2 to be too small, we obtain

|∆f(x, y)| = |f(x̃, ỹ)− f(x, y)| ≤ |∆x|
∣∣∣∣∣∂f

∂x
(x, y)

∣∣∣∣∣+ |∆y|
∣∣∣∣∣∂f

∂y
(x, y)

∣∣∣∣∣
12



and ∣∣∣∣∣∆f(x, y)

f(x, y)

∣∣∣∣∣ .
=

∣∣∣∣∣ x

f(x, y)

∂f(x, y)

∂x

∆x

x
+

y

f(x, y)

∂f(x, y)

∂y

∆y

y

∣∣∣∣∣
≤

∣∣∣∣∣ x

f(x, y)

∂f(x, y)

∂x

∣∣∣∣∣
∣∣∣∣∆x

x

∣∣∣∣+
∣∣∣∣∣ y

f(x, y)

∂f(x, y)

∂y

∣∣∣∣∣
∣∣∣∣∣∆y

y

∣∣∣∣∣ .

Example 9. We derive the following formulas for absolute and relative
errors of results of basic arithmetic operations by putting f(x, y) = x ± y,
f(x, y) = x · y and f(x, y) = x/y.

1)

∆(x± y)
.
= ∆x±∆y

∆(x± y)

x± y
.
=

x

x± y

∆x

x
± y

x± y

∆y

y

2)

∆(xy)
.
= y∆x + x∆y

∆(xy)

xy
.
=

∆x

x
+

∆y

y

3)

∆

(
x

y

)
.
=

1

y
∆x− x

y2
∆y

∆
(

x
y

)
x
y

.
=

∆x

x
− ∆y

y

Example 10. (Loss of significant digits) If we solve the quadratic equa-
tion

x2 − 56x + 9 = 0

by the well–known formula using the fixed–point mode with n = 3, we obtain

x1,2 =
56±

√
562 − 4

2
= 28±

√
282 − 1

= 28± 27.982 =

{
55.982
0.018± 0.0005
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The first root has 5 significant digits, but the second root has 2 significant
digits only. One can see immediately that the reason for this loss of 3 sig-
nificant digits is in the subtraction of two numbers of approximately equal
value. This difficulty appears quite often in computations. We suggest the
following two remedies.

a)
√

784−
√

783 = 784−783√
784+

√
783

.
= 0.017863± 5 · 10−7

b) For f(x) =
√

x and x = 784, we obtain by the Taylor theorem

f(x− 1) = f(x)− f ′(x) + 1
2
f ′′(x)

f(x)− f(x− 1) = 1
56

+ 1
8·28·784

= 0.017863± 5 · 10−7

Definition . Algorithms for which the cumulative effect of truncation
errors is limited are called stable.

Example 11. Evaluate the integrals

yi =
∫ 1

0

xi

x + 1
dx for i = 0, 1, . . . , 6.

Round off to 4 decimals.

For effectivity of evaluations, we use the following recursive relation:

yi + 10yi−1 =
∫ 1

0

xi + 10xi−1

x + 10
dx =

∫ 1

0
xi−1dx =

1

i

If we use the fact that y0 = [ln |x + 1|]10 = ln 1.1
.
= 0.0953 and, by means of

the above formula in the form yi = 1/i− 10yi−1, we obtain

y1 = 1− 10y0 = 1− 0.953 = 0.0470

y2 =
1

2
− 10y1 = 0.5− 0.47 = 0.0300

y3 =
1

3
− 0.3 = 0.0333

y4 =
1

4
− 0.333 = −0.083

...

As all the values of yi have to be positive obviously, value of y4 is a nonsense.
This algorithm is non–stable for the following reason: At the beginning, we
have substituted the exact value y0 = ln 1.1 = 0.09531018 by its approxima-
tion ỹ0 = 0.0953 with the error E0 = 0.00001018. If we neglect other sources

14



of error, we see that this error E0 is multiplied by 10 in every step. Hence
its values are approximately E1 = 0.0001018, E2 = 0.001018, E3 = 0.01018,
E4 = 0.1018, . . .. We can see that, starting with E4, these errors dominate.

If we use our recursive relation in the ”opposite direction”, i. e.

yi−1 = 0.1(
1

i
− yi),

the error broth by yi decreases 10 times in every step. By putting y7 = 0, we
obtain

y6 =
1

70
= 0.0143

y5 = 0.1
(

1

6
− y6

)
= 0.0152

y4 = 0.1
(

1

5
− y5

)
= 0.0185

y3 = 0.1
(

1

4
− y4

)
= 0.0232

y2 = 0.0310

y1 = 0.0469

y0 = 0.0953

which are exact for all indexes less that 5.

3 The non–linear equation f (x) = 0

Problem. Let f be a real function defined on an interval I ⊆ <. Find a
number x ∈ I such that

f(x) = 0. (1)

The number x satisfying (1) is called a root of (1). Equation (1) is said to be{
algebraic whenever f(x) is a polynomial
transcendental otherwise

Example 12. Find approximations of all roots of the equation

f(x) ≡ 10 sin x− x− 5 = 0

from the interval (0, π).
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Graphical method consists in splitting the function f(x) into two functions
whose graph can be drawn schematically. In our case, we have

f(x) = 0 ⇐⇒ 10 sin x = x + 5.

-
x

6y

π

5 y = x + 5

y = 10 sin x

Figure 6 x1 x2

From this illustration, we can see that there are two roots of our equation,
x1 .

= 0.5 and x2 .
= 2.4. We can obtain more accurate information from the

following table.

x f(x)
0.5 -0.7057
0.7 0.7422
2.4 -0.6454
2.2 0.8850

From the values of f in the points 0.5 and 0.7, we conclude that x1 ∈ (0.5, 0.7)
and the values in the remaining two points tell us that x2 ∈ (2.2, 2.4). We
have used the following important statement.

Theorem 1. If a function f is continuous on a closed interval [a, b], i.
e. f ∈ C[a, b], and

f(a) · f(b) < 0

then there exists x ∈ (a, b) such that f(x) = 0.

The following two methods use Theorem 1 repeatedly. For

f ∈ C[a0, b0], f(a0) · f(b0) < 0

given, both construct intervals

[a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [an, bn] ⊃ . . .

such that
f(an) · f(bn) < 0 for n = 1, 2, . . .
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The new interval [an, bn] is constructed in the following way: A point sn ∈
(an−1, bn−1) is chosen. As f(an−1, bn−1) < 0, exactly one of the following
conditions 1 – 3 is valid.

1. f(an−1) · f(sn) < 0. In this case we put an = an−1, bn = sn.

2. f(sn) · f(bn−1) < 0. In this case we put an = sn, bn = bn−1.

3. f(sn) = 0. In this case, the computation stops.

The method of bisection computes

sn =
1

2
(an−1 + bn−1)

and, for ε > 0 given, it stops whenever (bn − an)/2 < ε. Then x
.
= sn+1.

Velocity of convergence of bisection: At the beginning we have

x = s1 ± ε0 for ε0 =
b0 − a0

2

and after n steps we have

x = sn+1 ± εn for εn =
bn − an

2

As

εn =
bn − an

2
=

bn−1 − an−1

4
= . . . =

b0 − a0

2n+1
,

we have εn = ε0/2
n for n = 1, 2, . . .

Example 2. How many steps decrease the error estimate 10 times?
n steps decrease the error–estimate 2n times
the least n such that

10 ≤ 2n

is n = 4 (10
.
= 23.3), so that 4 steps (3.3 steps) are needed.

Example 3. Approximate the root x1 from Example 1 with an error
less than 10−3.

x1 ∈ (0.5, 0.7) =⇒ x1 = 0.6± 0.1.

Hence we have d0 = 0.1 and we search the least n such that

0.1

2n
< 10−3.
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This is equivalent to 100 < 2n and this is equivalent to 7 ≤ n. That is why
we need at least 7 steps of bisection.

i ai−1 sgnf(ai−1) bi−1 sgnf(bi−1) si sgnf(si)
1 0.5 - 0.7 + 0.6 +
2 0.5 - 0.6 + 0.55 -
3 0.55 - 0.6 + 0.575 -
4 0.575 - 0.6 + 0.5875 -
5 0.5875 - 0.6 + 0.59375 +
6 0.5875 - 0.59375 + 0.590625 -
7 0.590625 - 0.59375 + 0.5921875 -
8 0.5921875 - 0.59375 + 0.59296875

Hence we have x1 = 0.59296875±0.001 and more exactly x1 = 0.59296875±
0.00078125.

The regula falsi method computes

sn = an−1 −
(an−1 − bn−1)f(an−1)

(f(an−1)− f(bn−1))

and, for δ > 0 given, the method stops whenever |f(sn)| < δ. Then x
.
= sn.

-
x

6y

y = f(x)

[an−1, f(an−1)]

an−1 bn−1

[bn−1, f(bn−1)]

snFigure 7

In the following Fig. 8 we illustrate situation in which this method ter-
minates incorrectly and Fig. 9 illustrates a situation in which the effectivity
of the regula falsi method is much worse than that of bisection.
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y = f(x)

[an−1, f(an−1)]

an−1 bn−1

[bn−1, f(bn−1)]

sn

Figure 8

-
x

6y

y = f(x)
an−1 bn−1

sn sn+1Figure 9

Example 4. Find the root of the equation 10 sin x−x− 5 = 0 from the
interval (0.5, 0.7) with accurracy δ = 0.0002.

The solution is presented in the following table.

n an−1 bn−1 f(an−1) f(bn−1) sn |f(sn)|
1 0.5 0.7 -0.705745 é.742177 0.597484 0.028156
2 0.5 0.597484 -0.705745 0.028156 0.593744 0.000938
3 0.5 0.593744 -0.705745 0.000938 0.59361957 0.000031

We can see that x1 .
= 0.59361957.

4 Iteration

We repeat that the first stem in solving an equation f(x) = 0 consists in
rewriting the given equation in the equivalent form x = F (x). In what follows,
we investigate equations of this form.

Definition . Let X be a non–empty set and F : X −→ X be a map.
An element x ∈ X is called a fixed point of the map F whenever x = F (x).

ITERATION: Starting point (initial approximation) x0 ∈ X is choosen

19



and the consecutive approximations x1, x2, . . . are computed by the formula

xi+1 = F (xi)

for i = 0, 1, . . .

If the map F is continuous and if limi−→∞ xi = x then we already know
that x = F (x). In order to make this consideration exact, we first have
to answer the question what does it mean that F is continuous and that
limi−→∞ xi = x.

Definition . Let be X 6= ∅ and d : X ×X −→ <. If

D1 d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y,

D2 d(x, y) = d(y, x),

D3 d(x, y) ≤ d(x, z) + d(z, y)

then we call X, more exactly the ordered pair (X, d) a metric space, elements
x ∈ X points, the map d a metric and the value d(x, y) a distance between x
and y.

Definition . Let X be a metric space, (xi)
∞
0 ⊆ X and let x ∈ X. We

put

x = lim
i−→∞

xi

whenever
d(xi, x) −→ 0 as i −→∞.

A more precise formulation of this condition is the following:

∀ε > 0∃i0 > 0 : d(xi, x) < ε∀i > i0.

Theorem 1. Every sequence in a metric space has at most one limit.
Proof. If we admit x = limi−→∞ xi and y = limi−→∞ xi =⇒

0 ≤ d(x, y) ≤ d(y, xi) + d(y, xi) −→ 0

as i −→∞ =⇒ x = y.

Definition . Let X be a metric space and (xi)
∞
0 ⊆ X. We say that

(xi)
∞
0 is a Cauchy (fundamental) sequence whenever

d(xi, xj) −→ 0 as i −→∞, j −→∞
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[∀ε∃i0 : d(xi, xi+p) < ε∀i > i0, p > 0.]

Theorem 2. Every convergent sequence in a metric space is fundamen-
tal.

Proof. If limi−→∞ xi = x then ∀ε > 0∃i0 : d(xi, x) < 1
2
ε∀i > i0. If i > i0

and p > 0 then

d(xi, xi+p) ≤ d(xi, x) + d(xi+p, x) < ε.

There exist Cauchy sequences which are not convergent.

Definition . A metric space X is said to be complete if every Cauchy
sequence in X is convergent.

Definition . Let be X a metric space, F : X −→ X and α ∈ [0, 1). The
map F is called a contraction on X with coefficient α whenever

d(F (x), F (y)) ≤ αd(x, y)∀x, y ∈ X.

Observe that any contraction is continuous.

Theorem 3. (The Banach Fixed–point Theorem) Let be X a complete
metric space, F a contraction on X with coefficient α, x0 an arbitrary point
in X and (xi)

∞
0 the related iterative sequence. Then

a) there exists a unique fixed–point x̂ of F in X,

b) x̂ = limi−→∞ xi,

c) d(xi, x̂) ≤ αid(x0, x̂) for i = 1, 2, . . .,

d) d(xi, x̂) ≤ αi

1−α
d(x0, x1) for i = 1, 2, . . . .

Remark . The statement

a) declares the existence and unicity of a fixed–point,

b) describes the way how to approach x̂,

c) says that xi is the closer to x̂ the

- smaller the distance d(x0, x̂)

- smaller α
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- bigger the index i

d) is a practically applicable error–estimate.

Proof. 1. Uniqueness. If u = F (u) and v = F (v) then d(u, v) = d(F (u), F (v)) ≤
αd(u, v) and, consequently, (1− α)d(u, v) ≤ 0 and we obtain d(u, v) ≤ 0, so
that d(x, y) = 0 and u = v due to D1.

2. d(xi, xi+1) ≤ αid(x0, x1)∀i = 1, 2, . . .: d(xi, xi+1) = d(F (xi−1), F (xi)) ≤
αd(xi−1, xi) ≤ . . . ≤ αid(x0, x1).

3. d(xi, xi+p) ≤ d(xi, xi+1) + d(xi+1, xi+2) + . . . + d(xi+p−1, xi+p) ≤ (αi +

αi+1 + . . . + αi+p−1)d(x0, x1) ≤ αi(1 + α + . . .)d(x0, x1)) = αi

1−α
d(x0, x1).

4. Existence. If ε > 0 is arbitrary then there exists i0 > 0 such that
αi0

1−α
d(x0, x1) < ε. Then d(xi, xi+p) < ε for all i > i0, p > 0 by 3. Hence

(xi)
∞
0 is a Cauchy sequence. As X is a complete metric space, there exists

x̂ = limi−→∞. We already know that then x̂ = F (x̂).
5. d(xi, x̂) ≤ αid(x0, x̂) : d(xi, x̂) = d(F (xi−1), F (x̂)) ≤ αd(xi−1, x̂) ≤

. . . ≤ αid(x0, x̂).

6. d(xi, x̂) ≤ αi

1−α
d(x0, x1) : If p > 0 then d(xi, x̂) ≤ d(xp, xi+p) +

d(xi+p, x̂) ≤ αi

1−α
d(x0, x1) + d(xi+p, x̂) −→ αi

1−α
d(x0, x1) as p −→∞.

4.1 Examples of metric spaces

1. E1 = (<, d) and d(x, y) = |x − y|. Verification of the axioms D1 – D3 is
very simple. For example D3:

d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ |x− z|+ |z − y| = d(x, z) + d(y, x).

2. (Ren, d/infty) with d∞(x, y) = max1≤i≤n |xi − yi|. We again verify D3
only:

d∞(x, y) = max
1≤i≤n

|xi − yi| = |xj − yj

≤ |xj − zj|+ |zj − yj| ≤ d(x, z) + d(z, y)

3. (<n, d1) with d1(x, y) = |x1 − y1| + |x2 − y2| + . . . + |xn − yn|. Verify
D1 – D3.

4. En = (<n, d2) with d2(x, y) =
√

(x1 − y1)2 + . . . + (xn − yn)2. Veri-

fication of D3: We have d2(x, y) =
√∑

(xi − yi)2 and d2(x, z) + d2(z, y) =√∑
(xi − zi) +

√∑
(zi − yi)2. If we put ai = xi − zi and bi = zi − yi then

D3 ⇐⇒ d2(x, y)2 ≤ (d2(x, z) + d2(z, y))2
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⇐⇒
∑

(ai + bi)
2 ≤

(√∑
a2

i +

√∑
b2
i

)2

⇐⇒
∑

a2
i + 2

∑
aibi +

∑
b2
i ≤

∑
a2

i + 2

√∑
a2

i ·
√∑

b2
i +

∑
b2
i

⇐⇒
n∑

i=1

aibi ≤

√√√√ n∑
i=1

a2
i ·

n∑
i=1

b2
i .

We show later that the last inequality is valid.
5. (C[a, b], d∞) with d∞(f, g) = maxa≤x≤b |f(x) − g(x)|. Verify that the

axioms D1, D2, D3 are valid.

6. (C[a, b], d2) with d2(f, g) =
√∫ b

a [f(x)− g(x)]2 dx. Verify D1, D2 and
show that

D3 ⇐⇒
∫ b

a
f(x) · g(x)dx ≤

√∫ b

a
f 2(x)dx ·

∫ b

a
g2(x)dx

as in 5.
7. (L2(a, b), d2) with L2(a, b) = {f | the Lebesgue integral

∫ b
a f 2(x)dx exists and is finite}

is a metric space.

Remark . The metric spaces 1–5 are complete. Metric space 6 is not
complete and the metric space 7 is complete.

Example . The sequence (fn(x))∞n=1 such that

fn(x) =


−1 0 ≤ x ≤ − 1

n

nx − 1
n
≤ x ≤ 1

n

1 1
n
≤ x ≤ 1

, n = 1, 2, . . .

is a Cauchy sequence in (C[−1, 1], d2) which has no limit in (C[−1, 1], d2).

-
x

6y

#
#
#
#
#
#
#
#
#
#
##

p p p p p p p p
p p p p p p p p

p p p p p p p p
p p p p p p p p

p p p p p p p p p p p

p p p p p p p p p p p

−1 1

−1

1

y = fm(x)

y = fn(x)

Figure 10

One can verify by computation that∫ 1

−1
(fm(x)− fn(x))2 dx =

m2 + mn + n2

3mn2
<

6n2

3mn2
=

2

m
−→ 0
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as m, n −→∞. It is easy to see that for

f(x) =

{
−1 −1 ≤ x < 0
1 0 < x ≤ 1

,

we have d2(fn, f) −→ 0 as n −→∞, i. e.

f(x) = lim
n−→∞

fn(x) in L2(−1, 1).

As f /∈ C[−1, 1], the sequence (fn)∞1 has no limit in (C[a, b], d2).

Exercise. Decide whether (fn)∞1 has a limit in (C[a, b], d∞).

Example . The sequence
(

1
n

)∞
n=1

has a limit 0 in E1 =⇒
(

1
n

)
is a Cauchy

sequence in ((0, 1], d). But
(

1
n

)∞
1

has no limit in ((0, 1], d).

4.2 Solution of f(x) = 0 by iteration

Let I be an arbitrary interval in <. Then the metric space (I, d) is complete
if and only if I is closed.

Theorem 4. Let x̂ be a fixed–point of a real function F . Let δ > 0 and
α ∈ [0, 1) satisfy

|F ′(x)| ≤ α ∀x ∈ (x̂− δ, x̂ + δ).

Then F is a contraction with coefficient α in the metric space (I, d) for
I = [x̂− δ, x̂ + δ].

Proof. a) If x, y ∈ I are arbitrary then F (x), F (y) ∈ I and

d(F (x), F (y)) = |F (x)− F (y)| = |F ′(ξ)(x− y)|
≤ α|x− y| = αd(x, y).

The point ξ is situated between x and y by the Mean Value Theorem.

b) Let us consider the map F : I −→ I. Then x ∈ I if and only if
|x− x̂| ≤ δ and we obtain |F (x)− x̂| = |F (x)− F (x̂)| ≤ α|x− x̂| ≤ αδ ≤ δ.
That is why F (x) ∈ I.

Example . Find all roots of the equation f(x) ≡ e−2x + x − 3 = 0 by
iteration. Put x = xi+1 whenever |xi+1 − xi| < 0.1 · 10−4.
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x2 x1

Figure 11

y = e−2x

y = 3− x

As f(x) = 0 ⇐⇒ e−2x = 3− x, we can see from Fig. 11 that there exist
two roots x1 .

= 3 and x2 .
= −1.

a) f(x) = 0 ⇐⇒ x = 3− e−2x =⇒ F1(x) = 3− e−2x. As

|F ′
1(x)| = 2e−2x < 1 ⇐⇒ e−2x < 0.5 ⇐⇒ x > −0.5 ln 0.5

.
= 0.3466,

we use F1(x) for the computation of x1, so that we put x0 = 3 and compute
xi+1 = 3− e−2xi for i = 0, 1, . . . with the results listed in the following table.

i xi

0 3.0
1 2.997521
2 2.9975095
3 2.9975095

We can see that x1 .
= 2.9975095.

b) f(x) = 0 ⇐⇒ −2x = ln(3− x) ⇐⇒ x = −1
2
ln(3− x) ≡ F2(x). As

F ′
2(x) =

1

6− 2x
<

1

6

for x < 0, F2 is a contraction in (−∞, 0] and we use the iteration x0 =
−1, xi+1 = −0.5 ln(3−xi), i = 0, 1, . . . for the following approximation of the
root x2.
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i xi

0 -1.
1 -0.653239
2 -0.653239
3 -0.647807
4 -0.647063
5 -0.646961
6 -0.646947
7 -0.646945
8 -0.646945

We can see that x2 .
= −0.646945.

4.3 Improvement by extrapolation (Aitken ∆2 process)

If we solve the equation x = F (x) by iteration and xi is close to the exact
solution x, we have

ei+1 = x− xi+1 = F (x)− F (xi) = F ′(ξ)(x− xi)
.
= F ′(x)ei and analogically

ei+2
.
= F ′(x)ei+1

If we eliminate F ′(x) (we use extrapolation), then we obtain

ei+1

ei

.
=

ei+2

ei+1

=⇒ x− xi+1

x− xi

.
=

x− xi+2

x− xi+1

.

If we express x, we obtain

x
.
= xi+2 −

(xi+2 − xi+1)
2

xi+2 − 2xi+1 + xi

xi+2 −
(∆xi+1)

2

∆2xi

.

Example . In the previous example, we obtain

x
.
= x3 −

(x3 − x2)
2

x3 − 2x2 + x1

= −0.646951 !!

4.4 Steffensen’s method

is based on a systematic use of the Aitken ∆2 process in the following way:
x0 is choosen and for i = 0, 1, . . .

x3i+1 = F (x3i), x3i+2 = F (x3i+1)

x3i+3 = x3i+2 − (∆x3i+1)2

∆2x3i
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4.5 The Newton method (linearization)

Let us assume that xi is close to the root x of the equation f(x) = 0. Then
we have

0 = f(x) = f(xi) + f ′(xi)(x− xi) +
f ′′(ξ)

2
(x− xi)

2. (2)

If we divide (2) by f ′(xi) (we assume f ′(xi) 6= 0 !) and express x, we obtain

x = xi −
f(xi)

f ′(xi)
−K(x− xi)

2 for K =
f ′′(ξ)

2f ′(xi)
. (3)

If we neglect the rightmost term and substitute x by xi+1, we obtain

xi+1 = xi −
f(xi)

f ′(xi)
(one step of the Newton method) (4)

Example . Let us use the Newton method for an approximation of the
root x2 from the previous example. Put x0 = −1 for comparison. Hence we
compute

x0 = −1, xi+1 = xi −
3− e−2xi(1 + 2xi)

1− 2e−2xi

with the results summarized in the following table.

i xi

0 -1.
1 -0.7540
2 -0.65896501
3 -0.64711038
4 -0.64694493
5 -0.64694490
6 -0.64694490

From this table it is apparent that in every step, the number of valid digits
is multiplied by two approximately. The following error analysis justifies this
fact.
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4.5.1 Geometric construction of xi+1

-

6

x

%
%
%
%
%
%
%

qy

Figure 12
y = f(x)

x̂ xi+1 xi

[xi, f(xi)]

Instead of the non–linear equation f(x) = 0, we solve the ”linearized
equation”

y
.
= f(xi) + f ′(xi)(x− xi) = 0

and, if we put x = xi+1, we obtain

f(xi) + f ′(xi)(xi+1 − xi) = 0 (5)

4.5.2 Error analysis

If we subtract (5) from (2), we obtain

|x− xi+1| = |K| |x− xi|2.

For comparison, bisection gives us

εi+1 ≤
1

2
εi

and iteration gives us

|x− xi+1| ≤ α |x− xi|

for some α < 1. Hence the Newton method is essentially more efficient than
bisection or iteration under the assumption that the error x − xi is small
enough. The Newton method has the following the following drawbacks:

i) it converges locally

ii) it requires higher smoothness of the function f (existence of first deriva-
tive)

iii) in each step, it requires to evaluate both f(xi) and f ′(xi).
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Definition . We say that an iterative method is of order r whenever
the error estimates εi satisfy

εi+1 ≤ C · (εi)
r

and C is a bounded function of r in some right neighbourhood of r = 0.

We have already seen that the Newton method is of order 2 and both
bisection and iteration are of order 1.

4.5.3 Fourier conditions

are the following sufficient conditions for the convergence of the Newton
method.

a) f ∈ C2[a, b] and f(a) · f(b) < 0

b) f ′, f ′′ do not change their sign in [a, b], f ′(x) 6= 0 ∀x ∈ [a, b]

c) x0 =

{
a if f(a) · f ′′(a) > 0
b if f(b) · f ′′(b) > 0

We do not verify this fact because of the following obvious geometric mean-
ing of it.
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y = f(x)
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4.5.4 Modifications of the Newton method

a) The secant method consists in the approximation

f ′(xi)
.
=

f(xi)− f(xi−1)

xi − xi−1

.

After inserting into (4), we obtain one step of the secant method

xi+1 = xi −
f(xi)(xi − xi−1)

f(xi)− f(xi−1)
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We can see that in each step of this method, the value f(xi) has to be
evaluated only instead of f(xi) and f ′(xi) in the Newton method. It is
known that this method is of the order r = 1.618 = (1 +

√
5)/2.

b) The second modification of the Newton method consists in the approx-
imation

f ′(xi)
.
=

f(xi + f(xi))− f(xi)

f(xi)
,

so that

xi+1 = xi −
f 2(xi)

f(xi + f(xi))− f(xi)
.

The order of convergence of this method is r = 2.

5 Vector and matrix norms

A matrix norm (and a vector norm as a special case) is a characteristics
of the sizes of the matrix entries. It is used to measure errors in matrix
computations. Hence we need to understand how to compute and manipulate
with them.

Definition . A norm on a real linear space L = (L, +, ·) is a function
‖ · ‖ : L −→ < satisfying the following axioms N1, N2, N3.

N1 ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = o

N2 ‖αx‖ = |α| ‖x‖

N3 ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality)

In ‖·‖ is a norm on the linear space (<n, +, ·) then we speak about a vector
norm and if it is a norm on the linear space (Mn, +, ·) of square matrices of
order n then we speak about a matrix norm.

Example . We will work with the following concrete examples

‖x‖1 =
n∑

i=1

|xi|, ‖x‖2 =

√√√√ n∑
i=1

x2
i

of vector norms on <n. More generally,

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p
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for all p ∈ [1,∞). As a limit for p −→∞, we obtain the norm

‖x‖∞ = max
1≤i≤n

|xi|.

Example . Analogically, the most important norms on the linear space
(L2(a, b), +, ·) are of the form

‖f‖p =

(∫ b

a
|f(x)|pdx

) 1
p

.

Remark. If ‖ ·‖ is a norm on a linear space L then the map d : L −→ <,
d(x, y) = ‖x − y‖ is a metric on L. Prove this simple but very important
relation as an exercise.

Theorem 1. For any two norms ‖ · ‖a, ‖ · ‖b on <n there exist positive
constants c1, c2 such that

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a

for all x ∈ <n.

Example .

a) ‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2

b) ‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞

a) ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞

Proof of a). We first show that 2|ab| ≤ a2 + b2 ∀a, b ∈ < :

0 ≤ (a + b)2 ⇐⇒ −2ab ≤ a2 + b2

0 ≤ (a− b)2 ⇐⇒ 2ab ≤ a2 + b2 ⇐⇒ 2|ab| ≤ a2 + b2

Proof of a).

‖x‖2
1 = (|x1|+ . . . + |xn|)2 = x2

1 + . . . + x2
n + 2

∑
1≤i<j≤n

|xixj|

≤ x2
1 + . . . + x2

n + 2
∑

1≤i<j≤n

(x2
i + x2

j) = n(x2
1 + . . . + x2

n) = n‖x‖2
2

and ‖x‖2 ≤ ‖x‖1 is obvious.

Verify b), c).
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Definition . If ‖ · ‖ is a norm on <n then we define the operator norm
on Mn by

‖A‖ = max
x∈<n,x 6=o

‖Ax‖
‖x‖

= max
x∈<n,‖x‖=1

‖Ax‖.

Theorem 2. Every operator norm on Mn is a matrix norm satisfying
the following consistency conditions

N4 ‖Ax‖ ≤ ‖A‖ ‖x‖,

N5 ‖AB‖ ≤ ‖A‖ ‖B‖.

Proof. N1: ‖A‖ ≥ 0 is obvious and ‖A‖ = 0 ⇐⇒ ‖Ax‖ = 0 ∀x : ‖x‖ =
1 ⇐⇒ A = O.

N2: ‖cA‖ = max‖x‖=1 ‖cAx‖ = |c|max‖x‖=1 ‖Ax‖ = |c| ‖A‖.

N3: ‖A + B‖ = max‖x‖=1 ‖(A + B)x‖ ≤ ‖A‖+ ‖B‖.

N4: ‖Ax‖ ≤ ‖A‖ ‖x‖ is obvious for x = o. If x 6= o then ‖Ax‖
‖x‖ ≤ ‖A‖ by

definition.

N5: ‖A ·B‖ = max‖x‖=1 ‖A ·Bx‖ ≤ max‖x‖=1 ‖A‖ · ‖Bx‖ = ‖A‖ · ‖B‖.

Examples.

a) ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij| is the operator norm of ‖x‖∞. (See Scheid,
1.36)

b) ‖A‖1 = max1≤j≤n
∑n

i=1 |aij| is the operator norm of ‖x‖1 :

‖x‖1 = |x1|+ |x2|+ . . . + |xn| = 1 =⇒

‖Ax‖1 =

∣∣∣∣∣∣
n∑

j=1

a1jxj

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

a2jxj

∣∣∣∣∣∣+ . . . +

∣∣∣∣∣∣
n∑

j=1

anjxj

∣∣∣∣∣∣
≤ |x1|

n∑
i=1

|ai1|+ |x2|
n∑

i=1

|ai2|+ . . . + |xn|
n∑

i=1

|ain|

≤ max
1≤j≤n

n∑
i=1

|aij| =⇒ ‖A‖1 ≤ max
1≤j≤n

n∑
i=1

|aij|.

Conversely, for j = 1, . . . , n, we define xj by

xj
i =

{
1 i = j
0 i 6= j

.

Then ‖xj‖1 = 1 and ‖Axj‖1 = |a1j| + |a2j| + . . . + |anj| ≤ ‖A‖1 =⇒
max1≤j≤n

∑n
i=1 |aij| ≤ ‖A‖1.
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Remark 1. If ‖ · ‖ is an operator norm and I is a unit matrix then

‖I‖ = max
x 6=o

‖Ix‖
‖x‖

= max
x 6=o

‖x‖
‖x‖

= 1.

Remark 2. a) ‖ · ‖F : Mn −→ <, ‖A‖F =
√∑n

i=1

∑n
j=1 a2

ij satisfies

N1–N5 for the vector norm ‖ · ‖2, but ‖I‖F =
√

n 6= 1, so that ‖ · ‖F is no
operator norm due to Remark 1.

b) ‖ · ‖ : Mn −→ <, ‖A‖ = max1≤i,j≤n |aij| satisfies N1–N3, but neither
N4 nor N5: If

A =


1 1 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0

 and x =


1
1
...
1

 then Ax =


n
0
...
0


and ‖Ax‖ = n, ‖A‖ = ‖x‖ = 1.

Definition . Let L = (L, +, ·) be a real linear space. A map 〈·, ·〉 :
L × L −→ < such that

S1 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = o

S2 〈x, y〉 = 〈y, x〉

S3 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

S4 〈αx, y〉 = α〈x, y〉

is called a scalar product (on L.)

Example . a) 〈x, y〉 =
∑n

i=1 xiyi is a scalar product on <n.

b) 〈f, g〉 =
∫ b
a f(x)g(x)dx is a scalar product on L2(a, b).

Theorem 1. (The Schwarz inequality) Let 〈·, ·〉 ve a scalar product on
a linear space L. Then

〈x, y〉2 ≤ 〈x, x〉 · 〈y, y〉 ∀x, y ∈ L. (6)

Proof. a) If x = o then (1) is valid.
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b) Let x 6= o. Then for any α ∈ <,

0 ≤ 〈αx + y, αx + y〉 = α2〈x, x〉+ 2α〈x, y〉+ 〈y, y〉

= 〈x, x〉
[
α2 + 2α

〈x, y〉
〈x, x〉

+
〈x, y〉2

〈x, x〉2

]
+ 〈y, y〉 − 〈x, y〉2

〈x, x〉

= 〈x, x〉
[
α +

〈x, y〉
〈x, x〉

]2

+ 〈y, y〉 − 〈x, y〉2

〈x, x〉

For α = − 〈x,y〉
〈x,x〉 , we obtain

0 ≤ 〈y, y〉 · 〈x, x〉 − 〈x, y〉2

〈x, x〉
⇐⇒ 〈x, y〉2 ≤ 〈x, x〉 · 〈y, y〉.

Remark . a) (1)⇐⇒ |〈x, y〉| ≤
√
〈x, y〉

√
〈y, y〉.

b) 〈x, y〉2 = 〈x, x〉 · 〈y, y〉 ⇐⇒ x = o or y + αx = o for some α ⇐⇒ x, y
are linearly independent: If x 6= o then

0 = 〈αx + y, αx + y〉 ⇐⇒ αx + y = o ⇐⇒ α +
〈x, y〉
〈x, x〉

= o.

Theorem 2. If 〈·, ·〉 is a scalar product on ⇐⇒ L then

‖x‖ =
√
〈x, x〉

is a norm on L.
Proof. N1, N2 follow by S1, S2, S4. N3:

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Remark . a) ‖x‖2 in <n and ‖f‖2 in L2(a, b) are constructed as in
Theorem 2.

b) The inequalities from Ex. 4, 6 of metric spaces (Section 4) are valid
due to (1).

6 Direct methods for systems of linear equa-

tions

We solve the problem to find the vector x satisfying

Ax = b (7)
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under the assumption that A is a regular matrix. (Then of course there exists
a unique solution x.)

1 a) Back substitution is a method for the system

a11x1 + a12x2 + . . . + a1nxn = b1 =⇒ x1 =
b1 − a12x2 − . . .− a1nxn

a11

a22x2 + . . . + a2nxn = b2 =⇒ x2 =
b2 − a23x3 − . . .− a2nxn

a22

(8)

...

an−1,n−1xn−1 + an,n−1xn = bn−1 =⇒ xn−1 =
bn−1 − an,n−1xn

an−1,n−1

annxn = bn =⇒ xn =
bn

ann

An essential characteristics of this procedure is the number of operations *
and /:

1 +
n−1∑
i=1

(n− i) + 1 = n + (n− 1) + . . . + 1 =
n(n + 1)

2
≈ n2

2
.

1 b) Elimination is a transformation of the system (7) to the system of
the form (8) by ”addition of a multiple of one equation to another equation”.

Example .

x1 + 4x2 + 3x3 = 1 | ·m21 = (−2)| ·m31 = (−1)

2x1 + 5x2 + 4x3 = 4

x1 − 3x2 − 2x3 = 5

−3x2 − 2x3 = 2 | ·m32 = (−−7

−3
)

−7x2 − 5x3 = 4

−1

3
x3 = −2

3

The coefficients mij are called the multipliers. They appear during the
process of elimination.

A general description of the extended matrix of coefficients in the phase
i of elimination :
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a11 a12 a1n b1

a
(1)
22 a

(1)
2n b

(1)
2

. . .
...

...

a
(i−1)
ii a

(i−1)
in b

(i−1)
i

...
...

...

a
(i−1)
ji a

(i−1)
jn b

(i−1)
j

...
...

...

a
(i−1)
ni ai−1

nn b(i−1)
n

The following fragment of a PASCAL – like code is a program of Gauss
elimination:

for i from 1 to n− 1 do

for j from i + 1 to n do

mji := −aji

aii

bj := bj + mji · bi

for k from i to n do

ajk := ajk + mjiaik

end do

end do

end do

From this program it is apparent that the number of operations * and / in
the process of elimination is the following:

n−1∑
i=1

n∑
j=i+1

(2 + n− i + 1) =
n−1∑
i=1

(n− i)(3 + n− i)

= 3[(n− 1) + (n− 2) + . . . + 1]

+ (n− 1)2 + (n− 2)2 + . . . + 1

=
3

2
n(n− 1) +

2n3 − 3n2 + n

6
≈ n3

3
.

Now, we can describe the complete process of Gauss elimination:

Step 1. Elimination. (Approximately n3/3 operations)

Step 2. Back substitution. (Approximately n2/2 operations)
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In order to formulate the necessary and sufficient conditions for a suc-
cessful application of Gauss elimination, we define the following symbols.

Definition . We put A(1) = [a11], A(2) =

[
a11 a12

a21 a22

]
,. . . ,A(n) = A.

Theorem 1. The algorithm of Gauss elimination solves the system (7)
successfully if and only if |A(i)| 6= 0 for i = 1, . . . , n.

In the following example, we can see that even if the assumptions of
Theorem 1 are fulfilled, real computations lead to incorrect results.

Example . Solve the system

x1 + x2 + x3 = 1

0.0001x2 + x3 = 1

x2 + x3 = 0

Round off to 4 significant digits.

The result of elimination is the following system with upper triangular
matrix:

1 1 1 1
0.0001 1 1

-9999 -10000

and the back substitution gives us the approximate solution

x̃ =

 0
0
1

 , while the exact solution is x =

 1
−10000

9999
10000
9999

 .

Explanation: The roundoff error x3 − x̃3 = 1/9999 is divided by 0.0001, i.
e. multiplied by 10 000 during the computation of x̃2 in the back substitu-
tion. Hence the error increases essentially because of dividing the error by
very small pivot 0.0001. This is the reason why modifications of the Gauss
elimination are used frequently. One of them is presented in the following.

6.1 Gauss elimination with pivoting

In every phase i = 1, 2, . . . , n − 1, we first find |a(i−1)
ji | = maxi≤k≤n |a(i−1)

ki |
and, if j 6= i, then exchange of equation i with equation j. See Fig. 15.
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Figure 15

Remark . Gauss elimination with pivoting solves problem (7) for all
regular matrices A and for all right–hand sides b.

6.2 LU–decomposition of matrices

Definition . A lower triangular matrix L with units in the main diagonal
and an upper triangular matrix U create an LU–decomposition of A ∈ Mn

whenever
A = L · U.

Theorem 2. Let A ∈Mn be such that |A(k)| 6= 0 for k = 1, . . . , n. Then
A = L · U for

L =


1

−m21 1
...

...
. . .

−mn1 −mn2 . . . 1

 , U =


a11 a12 . . . a1n

a
(1)
22 . . . a

(1)
2n

. . .
...

a(n−1)
nn

 .

Sketch of the proof in the case n = 3 : Verify consecutively for the matrices

M1 =

 1
m21 1
m31 1

 , M2 =

 1
1

m32 1


that

M1A =


a11 a12 a13

a
(1)
22 a

(1)
23

a
(1)
32 a

(1)
33

 ,
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M2M1A = U and A = M−1
1 M−1

2 U ,

M−1
2 =

 1
1

−m32 1

 , M−1
1 =

 1
−m21 1
−m31 1


and

M−1
2 ·M−1

1 =

 1
−m21 1
−m31 −m32 1

 .

Hence it is sufficient to put L = M−1
2 ·M−1

1 .

Remark . If we solve the system Ax = b and we know the LU–
decomposition A = L · U then Ax = b ⇐⇒ L · Ux = b and if we put
y = Ux, we can solve the problem Ax = b in the following two steps

1. Ly = b
2. Ux = y

with complexity approximately n2/2+n2/2 which is essentially smaller than
the complexity n3/3 + n2/2 of the Gauss elimination.

6.3 Matrix inversion

a) If a matrix A ∈ Mn is regular then a matrix X is inverse to A if and
only if

AX = I ⇐⇒


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann




x11 . . . x1j . . . x1n

x21 . . . x2j . . . x2n
...

...
...

xn1 . . . xnj . . . xnn

 =


1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

 .(9)

If we denote by xj and ej the j–th column of the matrix X and of the unit
matrix I then (9) is equivalent to the following n systems of equations

Axj = ej for j = 1, . . . , n.

Example . If A =

 1 4 3
2 5 4
1 −3 −2

 then we find A−1 by solving the 3

systems from (9) by the following elimination.
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1 4 3 1 0 0
2 5 4 0 1 0
1 -3 -2 0 0 1

-3 -2 -2 1 0
-7 -5 -1 0 1

-1
3

11
3

-7
3

1

By performing the back substitution three times, we obtain the inverse matrix

A−1 =

 2 −1 1
8 −5 2
−11 7 −3

 .

Roughly, the complexity of this algorithm is th complexity of one elimination
and of n back substitutions. Hence the number of operations * and / is
n3/3 + n · n2/2 ≈ n3.

b) The Jordan method is a modification of the method a) consisting in
transforming the matrix A not only to the upper triangular form but to the
unit matrix. Then the n systems of equations are solved, so that in the place
of the original right–hand sides, the inverse matrix appears.

Example . We continue the elimination from the previous example by
transforming the upper triangular matrix on the left to the unit matrix.

1 4 3 1 0 0
-3 -2 -2 1 0

-1
3

11
3

-7
3

1
1 4 0 34 -21 9

-3 0 -24 15 -6
1 -11 7 -3

1 0 0 2 -1 1
1 0 8 -5 2

1 -11 7 -3

6.4 Special matrices

6.4.1 Symmetric positive definite (s. p. d.) matrices

Definition . A matrix A ∈Mn is called s. p. d. whenever

A = A> and x>Ax > 0 ∀x 6= o.
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Theorem 3. Let the matrix A ∈Mn be symmetric. Then we have

a) A is s. p. d. ⇐⇒ the pivots a11, a
(1)
22 , . . . , a(n−1)

nn are positive.

b) Ak =


a

(k)
k+1,k+1 . . . a

(k)
k+1,n

...
...

a
(k)
n,k+1 . . . a(k)

n,n

 is symmetric for k = 1, . . . , n− 1.

Theorem 3 says that if A is s. p. d. then the Gauss elimination is
successful for Ax = b and, in all Ak, the elements in and above the
main diagonal can be computed only.

Theorem 4. If A ∈Mn is s. p. d. then there exists an upper triangular
matrix L with positive entries in the main diagonal s. t.

A = L> · L.

This representation is called the Choleski decomposition of A.

By consecutive comparisons of the elements of the matrices on the right
and left sides of the following identity for the indices (1, 1), (1, 2), . . . , (1, n),


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


l11

l12 l22
...

...
. . .

l1n l2n . . . lnn




l11 l12 . . . l1n

l22 . . . l2n

. . .
...

lnn

 ,

(2, 2), . . . , (2, n), . . . , (n, n), we obtain the following construction of the ma-
trix L can be derived.

1. l11 =
√

a11 and l1j = a1j/l11 for j = 2, . . . , n.

2. For i = 2, . . . , n−1 : lii =
√

aii −
∑i−1

k=1 l2ki and lij =
(
aij −

∑i−1
k=1 lkilkj

)
/lii

for j = i + 1, . . . , n.

3. lnn =
√

ann −
∑n−1

k=1 l2kn.

6.4.2 Band matrices

Definition . We say that A ∈ Mn is a band matrix if there exist p ≥ 0,
q ≥ 0 s. t.
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j < i− p =⇒ aij = 0 and j > i + q =⇒ aij = 0

for i = 1, . . . , n. Then the integer p + 1 + q is called the band breath. The
following scheme illustrates the band matrix A and the ”preservation of the
band structure in LU–decomposition”.

A = =

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@

p q

@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@

p q

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@

= LU

6.5 Condition number of a matrix

Let us solve the problem (7) under the condition that the matrix A ∈Mn is
regular. We study the dependence of the error ex:

x = x̃ + ex (10)

on the error eb:
b = b̃ + eb (11)

under the assumptions that the entries of matrix A are exact and we solve
the system (7) exactly. Thus, instead of (7), we solve

Ax̃ = b̃. (12)

Then we obtain by (7), (10 – 12) that A(x̃ + ex) = b̃ + eb and then

Aex = eb. (13)

If ‖ · ‖ denotes a vector norm as well as the related matrix operator norm
then, due to N4, (13) gives us

‖b̃‖ ≤ ‖A‖ ‖x̃‖

and (14) leads to

ex = A−1eb =⇒ ‖ex‖ ≤ ‖A−1‖ ‖eb‖.

By these two inequalities we obtain

‖ex‖ ‖b̃‖ ≤ ‖A‖ ‖A−1‖ ‖eb‖ ‖x̃‖.
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If we divide this inequality by ‖x‖ ‖b̃‖, we obtain

‖ex‖
‖x̃‖

≤ ‖A‖ ‖A−1‖‖eb‖
‖b̃‖.

(14)

This inequality says that the relative error of the solution on the left–hand
side is bounded by the product of the condition number

C(A) = ‖A‖ ‖A−1‖

of A and the relative error of the right–hand side.

Remark . Observe that the condition number C(I) of the unit matrix
I is equal to 1.

Definition . If C(A) � 1 then we say that the matrix A is ill–
conditioned.

Remark . Analogically as we have derived the upper estimate of the
influence of the right–side errors on the relative error of the solution, in Scheid
26.18 a lower estimate of this error is derived and in 26.19, the influence of
the errors in coefficients of the matrix A is analysed.

Example . Let us solve the problem

x1 + 0.7x2 = 1.69

0.7x1 + 0.5x2 = 1.21

with A =

[
1 0.7

0.7 0.5

]
and b =

[
1.69
1.21

]
by putting b̃ =

[
1.7
1.2

]
. Then

eb =

[
−0.01
0.01

]
, so that ‖eb‖∞ = 0.01. If we solve the systems Ax̃ = b̃ and

Ax = b simultaneously, we obtain

1 0.7 1.7 1.69
0.7 0.5 1.2 1.21

0.01 0.01 0.027

and x̃ =

[
1
1

]
, x =

[
−0.2
2.7

]
. Hence we have

ex =

[
−1.2
1.7

]
,
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so that ‖ex‖∞ = 1.7. As

A−1 =

[
50 −70
−70 100

]
,

we have ‖A‖∞ = 1.7, ‖A−1‖∞ = 170. By inserting into (14), we obtain
1.7 ≤ 1.7. In this case, the inequality gives us an exact value, so that the
right–hand side of (14) is not too large.

7 Eigenvalues and eigenvectors of matrices

7.1 Introduction

Every matrix A ∈ Mn represents a map x ∈ <n 7→ Ax ∈ <n. This map is
linear, i. e.

A(αx + βy) = αAx + βAy.

Definition . Let A ∈ Mn. If a number λ (in general, λ ∈ C) and a
vector x 6= o satisfy

Ax = λx (15)

then we call λ an eigenvalue and x an eigenvector of the matrix A.

Remark . Due to linearity, (15) is equivalent to

(A− λI)x = o (16)

saying that λ is an eigenvalue of A if and only if

|A− λI| = 0. (17)

This characteristic equation of the matrix A is a polynomial of degree n in
λ. Hence there exist exactly n eigenvalues of A (real and complex, including
multiplicity).

Definition . If A ∈ Mn then we call the set S of eigenvalues of A the
spectrum of A and we we call

%(A) = max
λ∈S

|λ|

the spectral radius of A.

Remark . For the operator norm of the norm ‖ · ‖2, we have ‖A‖2 =
%(A>A).
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Example . Find the eigenvalues and eigenvectors of the matrix

A =

 2 1 0
1 4 1
0 1 2


a) λ is an eigenvalue of A if and only if

|A− λI| =

∣∣∣∣∣∣∣
2− λ 1

1 4− λ 1
1 2− λ

∣∣∣∣∣∣∣ = (2− λ)(λ− 3−
√

3)(λ− 3 +
√

3) = 0

whenever λ1 = 2, λ2 = 3 +
√

3, λ3 = 3−
√

3.
b) xi is an eigenvector of A related to λi if and only if

(A− λiI) · xi = o.

This system has the following form for i = 1 :

0 1 0 0
1 2 1 0
0 1 0 0

and all solutions of the form x2 = 0, x1 + x3 = 0. Hence we can choose
x1 = [1, 0, 1]>. In the same way we can choose x2 = [1, 1 +

√
3, 1]> and

x3 = [1, 1−
√

3, 1]>.
It is interesting that in this case, all the eigenvalues are positive, real and

the eigenvectors are mutually orthogonal.

Remark . The knowledge of an eigenvalue and of the related eigenvector
is practically equivalent. Namely, if we know an eigenvalue λ of the matrix
A then the related eigenvector x is any non–zero solution of (16). If we know
the eigenvector x then λ satisfies

Ax = λx

x>Ax = x>λx = λ · ‖x‖2
2

λ =
x>Ax

‖x‖2
2

.

This fraction expressing the eigenvalue by means of the eigenvector is called
the Rayleigh quotient.
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Theorem 1. (Gerschgorin) If λ ∈ C is an eigenvalue of A ∈ >Mn then
there exists an endex i such that

|λ− aii| ≤
n∑

j=1,j 6=i

|aij|.

Proof. Let xi be the component of the eigenvector x of A related to the
eigenvalue λ of the largest absolute value. Then the j–th component of the
vector Ax− λx = o is

(aii− λ)xi +
∑
j 6=i

aijxj − 0.

Then
|λ− aii| |xi| ≤

∑
j 6=i

|aij| |xj|

and we obtain
|λ− aii| ≤

∑
j 6=i

|aij|.

Theorem 2. Let A ∈Mn, x 6= o and λ ∈ C satisfy

Ax = λx.

Then the following statements a) – d) are valid.

a) A(cx) = λ(cx) ∀c ∈ <

b) (A− cI)x = (λ− c)x ∀c ∈ <

c) Akx = λkx for k = 2, 3, . . .

d) A−1x = 1
λ
x for λ 6= 0 if and only if A is regular.

Proof of d): Ax = λx =⇒ A−1(Ax) = A−1λx =⇒ 1
λ
x = A−1x.

Theorem 3. If ‖ · ‖ is a consistent matrix norm then

%(A) ≤ ‖A‖ ∀A ∈Mn.

Proof. Let %(A) = |λ| and Ax = λx. Then

‖A‖ ‖x‖ ≥ ‖Ax‖ = ‖λx‖ = %(A)‖x‖ =⇒ ‖A‖ ≥ %(A).

Theorem 4. If A ∈Mn is s. p. d. then all eigenvalues of A are positive.
Proof. If Ax = λx then λ = x>Ax

‖x‖22
> 0.

Theorem 5. If A ∈Mn is symmetric then
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a) all eigenvalues of A are real and

b) eigenvectors related to mutually different eigenvectors are mutually or-
thogonal.

Proof of b). Assume that Au = λu, Av = µv and λ 6= µ. Then we have
consecutively

v>Au = λv>u |>

u>A>v = λu>v

u>Av = λu>v

u>Av = µu>v

µ〈u, v〉 = λ〈u, v〉 and λ 6= µ

〈u, v〉 = 0

Theorem 6. To every symmetric matrix A ∈ Mn there exists an
orthogonal system of n eigenvectors.

7.2 The power method

ASSUMPTIONS:
1. The eigenvalues λ1, . . . , λn of the matrix A are real and

|λ1| > |λ2| ≥ . . . ≥ |λn|.

2. The related eigenvectors x1, . . . , xn are orthogonal.
BASIC IDEA: Consider z0 ∈ <n and compute z1 = Az0,

z2 = Az1, . . . , zk = Azk−1 = Akz0, . . .

Due to assumption 2, there exist c1, . . . , cn such that

z0 = c1x
1 + . . . + cnx

n

and

zk = c1A
kx1 + c2A

kx2 + . . . + cnA
kxn

= c1(λ1)
kx1 + c2(λ2)

kx2 + . . . + cn(λn)kxn

= (λ1)
k

ccx
1 + c2

(
λ2

λ1

)k

x2 + . . . + cn

(
λn

λ1

)k

xn


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As |λi| < |λ1|,
(

λi

λ1

)k
−→ 0 as k −→∞ for i = 2, . . . , n. Hence zk .

= (λ1)
kc1x

1

is an approximation of x1 and

σk =
(zk)>Azk

‖zk‖2
2

.
= λ1 for k large.

Remark . a) Theoretically, if c1 = 0 then z0 ⊥ x1 and also zk ⊥ x1 for
k = 2, 3, . . .. If c1

.
= 0 then zk converges to the eigenvector λ1 very slowly.

b) The following two dangers appear:

|λ1| > 1 =⇒ ‖zk‖2 −→∞ as k −→∞ overflow

|λ1| < 1 =⇒ ‖zk‖2 −→ 0 as k −→∞ underflow

Of course, from a) we conclude that it is reasonable to choose z0 as close to
x1 as possible. Due to b), it is wise to ”normalize” every new vector zk: We
put

yk =
1

‖zk‖2

zk.

Then we have ‖yk‖2 = 1 and

σk = (yk)>zk+1 = (yk)>Ayk =
(zk)>Azk

‖zk‖2
2

.
= λ1.

Stop criterion: We approximate λ1 by σk whenever |σk − σk−1| < ε for some
given small positive number ε.

THE ALGORITHM OF THE POWER METHOD:
Input data: A ∈Mn, z0 ∈ <n, ε > 0.
Step 1. y0 = 1

‖z0‖z
0, z1 = Ay0, σ1 = 〈y0, z1〉, σ0 = 1e6.

Step 2. For k = 1, 2, . . . while |σk − σk−1| ≥ ε do

yk =
1

‖zk‖
z0, zk+1 = Ayk, σk+1 = 〈yk, zk+1〉

Step 3. y = 1
‖zk+1‖2 z

k+1.

Output data: σk
.
= λ1, y

.
= x1.

Example . A =

 2 1 0
1 4 1
0 1 2

, z0−[2, 0, 2]>, ε = 0.0005. The computation

is presented in the following table
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i zi
1 zi

2 zi
3 yi

1 yi
2 yi

3 σi

0 2 0 2 0.7071 0 0.7071
1 1.4142 1.4142 1.4142 0.5774 0.5774 0.5774 2.8284
2 1.7321 3.4641 1.7321 0.4082 0.8165 0.4082 4.0000
3 1.6330 4.0825 1.6330 0.3482 0.8704 0.3482 4.6667
4 1.5460 4.1964 1.5460 0.3267 0.8868 0.3267 4.7273
5 1.5403 4.2020 1.5403 0.3255 0.8877 0.3255 4.7317
6 1.5387 4.2020 1.5387 0.3252 0.8880 0.3252 4.7320

Remark . (Modifications of the power method)
a) Approximation of the least eigenvalue. The matrix A−1 has the eigen-

values 1
λ1

, . . . , 1
λn

and eigenvectors x1, . . . , xn. If 1
|λ1| ≤ . . . < 1

|λn| then the

power method, applied to A−1, gives us an approximation of the eigenvalue
1/λn and of the eigenvector xn. To avoid complicated computation of the
inverse A−1, the multiples zi+1 = A−1yi are computed by solving the equiv-
alent system of equations Azi+1 = yi and in this situation an application of
the LU–decomposition of A is effective. Instead of Azi+1 = yi, we solve the
following two systems of equations 1, 2 with triangular matrices:

1. Lw = yi,
2. Uzi+1 = w.
b) Approximation of an aigenvalue nearest to the given value c: We apply

the power method to the matrix (A−cI)−1. Indeed, λ is a nearest eigenvalue
to c⇐⇒ λ−c is the least eigenvalue of A−cI ⇐⇒ 1

λ−c
is the largest eigenvalue

of (A− cI)−1.

8 Iterative methods for linear systems

8.1 Basic notions

Our problem is to solve the system (7).
ASSUMPTIONS: A ∈Mn is symmetric positive definite. (Then all eigen-

values of A are positive.)
AGREEMENT: 0 < λ1 ≤ . . . ≤ λn are the eigenvalues and the cor-

responding eigenvectors x1, . . . , xn are mutually orthogonal, ‖xi‖ = 1 for
i = 1, . . . , n.

Definition . We put J(x) = 1
2
x>Ax− x>b.

Motivation in the simple case n = 1: A − [a] and A is s. p. d. if and
only if a > 0. The problem (7) means to find x ∈ < such that ax = b for
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a, b ∈ < given. This is equivalent to the problem to find x ∈ < such that the
expression 1

2
ax2 − bx is minimal.

Theorem 1. (Main theorem) If A ∈ Mn is symmetric positive definite
and Ax̂ = b then the following statements a), b), c) are valid.

a) J(x̂) = −1
2
x̂>Ax̂.

b) J(x) = 1
2
(x− x̂)>A(x− x̂) + J(x̂).

c) J(x̂) < J(x) ∀x 6= x̂.

Proof of a).

J(x̂) =
1

2
x̂>Ax̂− x̂>Ax̂ = −1

2
x̂>Ax̂.

Proof of b).

J(x) =
1

2
x>Ax− x>Ax̂ =

1

2

(
x>Ax− x>Ax̂

)
− 1

2
x>Ax̂

=
1

2
x>A(x− x̂)− 1

2
(x− x̂)>Ax̂− 1

2
x̂>Ax̂

=
1

2
(x− x̂)>A>x− 1

2
(x− x̂)>Ax̂ + J(x̂)

=
1

2
(x− x̂)>A(x− x̂) + J(x̂).

The statement c) follows by b) and by the positivity of A immediately.

For a given constant K ∈ < and for a given index i, we search after a
constant c such that s = cxi, xi a unit eigenvector of A satisfies 1

2
s>As =

K. As Axi = λix
i, we obtain c2

2
λi = K. This is equivalent to c =

√
2K
λi

.
This value characterizes the length of the half–axis of the level–ellipse in
the direction of xi. For example, the relation between the largest and least
half–axes is

1√
λ1

1√
λn

=

√
λn

λ1

≤
√
‖A‖ ‖A−1‖ =

√
C(A).

As

J(x) =
1

2

n∑
i=1

n∑
j=1

xixjaij −
n∑

i=1

xibi,

we have

∂J(x)/∂xp =
n∑

j=1

xjapj − bp for p = 1, . . . , n

and we can see that the following statement is valid.

Theorem 2. grad J(x) = Ax− b.
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8.2 Jacobi iteration

We choose the starting approximation x(0) ∈ <n and, for x(k) given, we
construct the the p–th component y of x(k+1) (p = 1, . . . , n) as a value such
that

Jp(y) = J(x
(k)
1 , . . . , x

(k)
p−1, y, x

(k)
p+1, . . . , x

(k)
n )

is minimal. This is equivalent to

∂Jp

∂y
= 0 ⇐⇒ yapp +

∑
j 6=p

apjx
(k)
j − bp = 0

⇐⇒ x(k+1)
p ≡ y =

1

app

bp −
∑
j 6=p

apjx
(k)
j

 for p = 1, . . . , n (18)

Example . Let us solve the following system of linear equations by the
Jacobi iteration. Choose x(0) = o.

2x1 − x2 =
1

3
−x1 + 2x2 − x3 = 1

−x2 + 2x3 = −1

3

The formulas (18) for one step of Jacobi iteration are of the following form

x
(k+1)
1 =

1

2

(
x

(k)
2 +

1

3

)
x

(k+1)
2 =

1

2

(
x

(k)
1 + x

(k)
3 + 1

)
x

(k+1)
3 =

1

2

(
x

(k)
2 − 1

3

)
and the sketch of computation can be found in the following table.

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.1667 0.5 -0.1667
2 0.4167 0.5 0.0833
...

...
...

...
25 0.6666 0.9999 0.3333
26 0.6666 0.9999 0.3333

Stop criterion: For ε > 0 given, we put x̃ = x(k+1) whenever ‖x(k+1)−x(k)‖ < ε.
Here ‖ · ‖ is an arbitrary consistent norm.
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We can see from (18) that

x(k+1) =


0 −a12

a11
. . . −a1n

a11

−a21

a22
0 . . . −a2n

a22
...

...
...

− an1

ann
− an2

ann
. . . 0

x(k) +


b1
a11
b2
a22
...

bn

ann

 ≡ Cx(k) + d ≡ F (x(k))

is the matrix form of one step (18) of the Jacobi iteration. We use this form
in the following theorem.

Theorem 3. If C ∈ Mn satisfies ‖C‖ < 1 for some consistent norm
then the iterative method

x(k+1) = Cx(k) + d

converges in (<n, d), d(x, y) = ‖x− y‖, for any x(0) ∈ <n.
Proof. The map F (x) = Cx + d is a contraction with coefficient α = ‖c‖

in the complete metric space (<n, d):

d(F (x), F (y)) = ‖F (x)− F (y)‖ = ‖Cx + d− (Cy + d)‖
= ‖C(x− y)‖ ≤ ‖C‖ d(x, y).

The statement follows by the Fixed Point Theorem.

Definition . A matrix A ∈ Mn is said to be strongly diagonally domi-
nant whenever

|aii| >
n∑

j=1,j 6=i

|aij| for i = 1, . . . , n.

Theorem 4. The Jacobi method converges for all systems of linear
equations with a strongly diagonally dominant matrix.

Proof. For the system Ax = b,

x(k+1) = Cx(k) + d with C = (cij), cij =

{
0 i = j

−aij

aii
i 6= j

(19)

is the Jacobi iteration. Then

n∑
j=1

|cij| =
1

|aii|

n∑
j=1,j 6=i

|aij| < 1

for i = 1, . . . , n, so that ‖C‖∞ < 1 and (19) converges due to Theorem 3.
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8.3 Gauss–Seidel iteration

Let us assume that the k–th iteration x(k) and the components x
(k+1)
1 , . . . , x

(k+1)
p−1

are known for some index p, 1 < p ≤ n. We find x(k+1)
p as that value of y

which minimizes the function

J̃p(y) = J(x
(k+1)
1 , . . . , x

(k+1)
p−1 , y, x

(k)
p+1, . . . , x

(k)
n ).

Then, as in Section 8.2, we obtain the Gauss–Seidel formula for y = x(k+1)
p .

x(k+1)
p ≡ y =

1

app

−∑
j<p

apjx
(k+1)
j −

∑
j>p

apjx
(k)
j + bp

 (20)

Example . Let us solve the system of linear equations

2x1 − x2 =
1

3
−x1 + 2x2 − x3 = 1

−x2 + 2x3 = −1

3

by the Gauss–Seidel iteration. Choose x(0) = o.
The formulas (19) for one step of Gauss–Seidel iteration are of the fol-

lowing form

x
(k+1)
1 =

1

2

(
x

(k)
2 +

1

3

)
x

(k+1)
2 =

1

2

(
x

(k+1)
1 + x

(k)
3 + 1

)
x

(k+1)
3 =

1

2

(
x

(k+1)
2 − 1

3

)
and the sketch of computation can be found in the following table.

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.1667 0.5833 0.1256
2 0.4583 0.7917 0.2294
...

...
...

...
14 0.6666 1.0000 0.3333
15 0.6666 1.0000 0.3333

The stop criterion is the same as in the Jacobi method.

Remark . Both Jacobi and Gauss–Seidel method converges for all s. p.
d. matrices. In these cases, Gauss–Seidel is non–essentially more efficient.
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8.4 Relaxation

is given by the relation

x(k+1)
p = x(k)

p +
ω

app

bp −
∑
j<p

apjx
(k+1)
j −

∑
j≥p

apjx
(k)
j

 for p = 1, . . . , n (21)

If we put ω = 1 then we obtain the Gauss–Seidel formula where in the brack-
ets the difference x(k+1)

p − x(k)
p appears. Hence relaxation is a modification of

the Gauss–Seidel method in which the difference x(k+1)
p − x(k)

p is multiplied
by a suitable relaxation parameter ω. It is well–known that for convergence,
ω ∈ (0, 2) is necessary. If ω < 1 [ω > 1] then we speak about subrelaxation
[superrelaxation]. The method issensitive w. r. to the value of the relaxation
parameter.

Example . Solve the system of linear equations from the previous
example by relaxatioin with ω = 1.2. We have

x
(k+1)
1 = x

(k)
1 +

1.2

2

(
−2x

(k)
1 + x

(k)
2 +

1

3

)
x

(k+1)
2 = x

(k)
2 +

1.2

2

(
x

(k+1)
1 − 2x

(k)
2 + x

(k)
3 + 1

)
x

(k+1)
3 = x

(k)
3 +

1.2

2

(
x

(k+1)
2 − 2x

(k)
3 − 1

3

)
and the results of computations are summarized in the following table.

k x
(k)
1 x

(k)
2 x

(k)
3

0 0 0 0
1 0.2 0.6 -0.2
2 0.52 0.672 0.2432
...

...
...

...
7 0.6667 1.0001 0.3334
8 0.6667 1.0001 0.3334

The stop criterion is the same as in the Jacobi method.

8.5 The steepest descent method

The subsequent methods for the minimization of

J(x) =
1

2
x>Ax− x>b
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(under the assumption that A is s. p. d.) are of the following form:

For given approximation x(k) and direction vector v(k), we compute αk ∈
<, so that

J(x(k) + αkv(k)) ≤ J(x(k) + αv(k)) ∀α ∈ <.

Then we put
x(k+1)) = x(k) + αkv(k).

We can derive an explicit formula for αk in the following way (we omit the
upper index (k)):

J̃(α) ≡ J(x + αv) =
1

2
(x + αv)>A(x + αv)− (x + αv)>b

=
1

2
x>Ax− x>b + α

[
1

2
v>Ax +

1

2
x>Av − v>b

]
+

α2

2
v>Av.

As 1
2
v>Ax + 1

2
x>Av = v>Ax by symmetry of the matrix A, we have

dJ̃

dα
= x>(Ax− b) + αv>Av = 0

if and only if

α =
v>r

v>Av
for r = b− Ax.

Hence we put

αk =
(v(k))>r(k)

(v(k))>Av(k)
, where r(k) = b− Ax(k) (22)

is called a k–th residuum.

In the steepest descent method,

v(k) = − grad J(x(k)) = b− Ax(k) = r(k)

is the direction of the most intensive decrease of values of J . Hence we have

x(0) is choosen

x(k+1) = x(k) + αkr(k) for αk =
r(k)>r(k)

r(k)>Ar(k)
, k = 0, 1, . . .

Remark . An important characteristics of the complexity of the steepest
descent method is that the number of steps corresponds to the condition
number C(A).
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Example . Approximate the solution of the system of equations 2 −1
−1 2 −1

−1 2


 x1

x2

x3

 =


1
3

1
1
3


by the steepest descent method. Choose ε = 0.00005.

The computation is summarized in the following table.

αk k x
(k)
1 x

(k)
2 x

(k)
3 r

(k)
1 r

(k)
2 r

(k)
3

0.5 0 0 0 0 1/3 1 -1/3
0.5 1 0.1667 0.5 -0.1667 0.5 0 0.5
0.5 2 0.4167 0.5 0.0833 0.5 0 0.5
0.5 3 0.4167 0.75 0.0833 0 0.5 0
...

...
...

0.5 27 0.6666 0.9998 0.3333 0 0.0001 0
0.5 28 0.6666 0.9998 0.3333 0.0001 0 0.0001

8.6 The heavy ball methods

The trajectory of a heavy ball on a surface in a gravitational field is not in
the direction of steepest descent. It depends on the ”old” direction, too. I.
e.

v(k) = r(k) + βk−1v(k−1), (v(−1) = o)

with βk−1 ≥ 0 suitably choosen. See Fig. 16.

H
HH

H
HH

H
HH

HH
HHY

Figure 16

8.7 The conjugate gradient method

Let us first relate a scalar product to every s. p. d. matrix.

Definition . Let A be a s. p. d. matrix. For x, y ∈ <n, we put

〈x, y〉A = x>Ay.
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Theorem 1. 〈·, ·〉A is a scalar product for every s. p. d. matrix A.
Proof. The properties

S1 〈x, x〉A ≥ 0 and 〈x, x〉A = 0 ⇐⇒ x = o,

S2 〈x, y〉A = 〈y, x〉A and

S3 〈x, αy + βz〉A = α〈x, y〉A + β〈x, z〉A
are easy to verify.

Definition . Vectors x, y are said to be conjugate whenever 〈x, y〉A = 0.

The following conjugate gradient method is a heavy ball method with βk−1

such that v(k), v(k−1) are conjugate:

x(0) is choosen

x(k+1) = x(k) + αkv(k), αk =
v(k)>r(k)

〈v(k), v(k)〉A
for k = 1, 2, . . .

Exercise. Verify that the vectors v(k) and v(k+1) are conjugate.

Example . By the conjugate gradient method solve the following system
of linear equations.  2 −1

−1 2 −1
−1 2


 x1

x2

x3

 =


1
3

1
1
3


The summary of the computations appears in the following two tables.

k x
(k)
1 x

(k)
2 x

(k)
3 r

(k)
1 r

(k)
2 r

(k)
3

0 0 0 0 1/3 1 -1/3
1 0.1667 0.5 -0.1667 0.5 0 0.5
2 0.7051 0.8462 0.1410 -0.2308 0.1538 0.2308
3 0.6667 1.0000 0.3333 0 0 0

k v
(k)
1 v

(k)
2 v

(k)
3 αk βk

0 1/3 1 -1/3 0.5 0.4091
1 0.6364 0.4091 0.3636 0.8461 0.2604
2 -0.0651 0.2604 0.3254 0.5909 0
3 0 0 0 0.3530

This result illustrates the general fact that the conjugate gradient method
gives us an exact solution after n steps. But, for large n, the iteration stops
much earlier usually. The necessary number of iterations corresponds to√

C(A).
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9 Methods for systems of non–linear equa-

tions

Definition . For all a ∈ En and δ > 0, we denote by Oδ(a) the open ball

{x ∈ En |d2(a,x) < δ}

with centre a and radius δ.

Definition . Let Ω ⊆ En and a ∈ En. We call a

a) an inner point of Ω whenever

∃δ > 0 : Oδ(a) ⊆ Ω.

b) a boundary point of Ω whenever for every δ > 0,Oδ(a) contains both
points from Ω different from a and points from En −Ω different from
a. We denote by ΓΩ the set of boundary points of Ω (the boundary of
Ω).

Definition . Let Ω ⊆ En. We say that Ω is

a) an open set whenever

Ω ∩ ΓΩ = ∅

(All points in Ω are inner points of Ω.)

b) a closed set whenever

ΓΩ ⊆ Ω.

c) compact whenever Ω is closed and bounded.

PROBLEM. Find a point x = [x1, x2] satisfying

f1(x) = 0
f2(x) = 0

(23)

for functions f1, f2 continuous on a domain Ω0 ⊆ E2.

In spite of systems of linear equations, the question concerning existence
and/or uniqueness of solutions of this problem is not solved in general. The
following example illustrates that this question is rather complicated.
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Example . The problem

x2 − y + a = 0
−x + y2 + a = 0

has

a) One solution for a = 0.25,

b) Two solutions for a = 0,

c) Four solutions for a = −1.

9.1 Iteration

We find functions F1, F2 : (23) is equivalent to

x1 = F1(x1, x2)
x2 = F2(x1, x2)

(24)

on some closed domain Ω ⊆ Ω0. If we use the vector noptation for (24), we
obtain

x = F (x) for F (x) = [F1(x), F2(x)] (25)

and we use the iteration

x(0) ∈ Ω is choosen, x(i+1) = F (x(i)) for i = 0, 1, . . .

Stop criterion:
For ε > 0 given, x

.
= x(i+1) whenever ‖x(i+1) − x(i)‖ < ε.

Theorem 1. Problem (25) has exactly one solution on Ω whenever

a) F : Ω −→ Ω and

b) ∃α < 1 : maxx∈Ω

(∣∣∣ ∂Fi

∂x1
(x)
∣∣∣+ ∣∣∣ ∂Fi

∂x2
(x)
∣∣∣) ≤ α.

Proof. The map F is a contraction on Ω with coefficient α: Let x, y ∈ Ω,
x 6= y. Then xy ⊆ Ω and

x(t) = [x1 + t(y1 − x1), x2 + t(y2 − x2)], t ∈ [0, 1],

its parametrisation. Let us put

ϕi(t) = Fi(x1 + t(y1 − x1), x2 + t(y2 − x2))
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for i = 1, 2. Then there exists ξ ∈ (0, 1) such that

|Fi(y)− Fi(x)| = |ϕi(1)− ϕi(0)| = |ϕ′(ξ)|

=

∣∣∣∣∣∂Fi

∂x1

(x(ξ))(y1 − x1) +
∂Fi

∂x2

(x(ξ))(y2 − x2)

∣∣∣∣∣
≤ α max(|y1 − x1|, |y2 − x2|) = α‖y − x‖∞.

for all points x, y ∈ Ω. Hence ‖F (y)−F (x)‖∞ ≤ α‖y−x‖∞. An application
of the Fixed Point Theorem to the contraction F on the complete metric
space (<2, d∞) gives us Theorem 1.

Example . It is apparent from Fig. 16 that the system of equations

f1(x) ≡ x1x2 − x2 − 1 = 0
f2(x) ≡ x2

1 − x2
2 − 1 = 0

has exactly two roots x1 .
= [1.8, 1.1], x2 .

= [−1.1,−0.6].

-
x1

6x2 f2(x) = 0f2(x) = 0

f1(x) = 0

f1(x) = 0

−1 1

x1

x2

Figure 17

It is easy to see that this system of equations is equivalent to

x1 =
√

x2
2 + 1 ≡ F1(x)

x2 =
√

x1 + x2−1
x1

≡ F2(x)
.

Then

JF (x) =

[
∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2

]
=

 0 x2√
x2
2+1

x2
1−x2+1

2
√

x3
1(x2

1+x2−1)

1

2
√

x1(x2
1+x2−1)


and, as

JF (1.8, 1.1) =

[
0 0.740

0.356 0.204

]
,

we have ‖JF (1.8, 1.1)‖∞ = 0.74. We conclude by Theorem 1 that the map F is
a contractioin on some open ball with centre [1.8, 1.1]. The first six iterations
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according to the formulas x(0) = [1.8, 1.1], x(i+1) = F (xi) are presented in
the following table.

i x
(i)
1 x

(i)
2

0 1.8 1.1
1 1.4866 1.3622
2 1.6898 1.3154
3 1.6523 1.3698
4 1.6960 1.3697
5 1.7070 1.3864
6 1.7094 1.3905

9.2 The Newton method

Assume that a known approximation x(k) is near to the exact solution x of
(23). If we approximate the zeros f1(x), f2(x) by the Taylor polynomial of
degree 1 around x(k), we obtain

f1(x
(k)) + ∂f1

∂x1
(x(k))(x1 − x

(k)
1 ) + ∂f1

∂x2
(x(k))(x2 − x

(k)
2 )

.
= 0

f2(x
(k)) + ∂f2

∂x1
(x(k))(x1 − x

(k)
1 ) + ∂f2

∂x2
(x(k))(x2 − x

(k)
2 )

.
= 0

(26)

The differences between left and right–hand sides in (26) correspond to

(x1 − x
(k)
1 )2, (x1 − x

(k)
1 )(x2 − x

(k)
2 ), (x2 − x

(k)
2 )2. (27)

If we substitute x1 by x
(k+1)
1 , x2 by x

(k+1)
2 , we obtain one step of the Newton

method

J(x(k))

[
x

(k+1)
1 − x

(k)
1

x
(k+1)
2 − x

(k)
2

]
= −

[
f1(x

(k))
f2(x

(k))

]
(28)

for

J(x(k)) =

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]
(x(k)).

The Newton method for systems of non–linear equations has similar prop-
erties as the Newton method for one non–linear equation. It converges very
quickly, but only locally, i. e. under the assumption that the initial approx-
imation x(0) is close to the exact solution.

Example . Approximate the root x1 of the system from the previous
example by means of the Newton method.

As
f1(x) ≡ x1x2 − x2 − 1 = 0
f2(x) ≡ x2

1 − x2
2 − 1 = 0

, we have

J(x) =

[
x2 x1 − 1
2x1 −2x2

]
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and we put x(0) = [1.8, 1.1]>, the system of equations

J(x(k))(x(k+1) − x(k)) = −
[

f1(x
(k))

f2(x
(k))

]
attains the following form for k = 0 :

1.1 0.8 0.12
3.6 -2.2 -1.03

By solving this system, we obtain x
(1)
1 − x

(0)
1 = −0.10566 and x

(1)
2 − x

(0)
2 =

0.29528. Then x(1) = [1.69434, 1.39528]>. For k = 1, the linearized system is
of the form

1.39528 0.69434 0.03120
3.38868 -2.70957 0.07603

A summary of the iterations appears in the following table.

k x
(k)
1 x

(k)
2

0 1.8 1.1
1 1.69434 1.39528
2 1.716728 1.395226
3 1.716673 1.395337
4 1.716673 1.395337

10 Approximation of functions

10.1 Function spaces

Definition . A non–empty set F of (real) functions with the same domain
is called a function space whenever

f, g ∈ F =⇒ αf + βg ∈ F ∀α, β ∈ <

Examples.

a) L2(a, b) is a function space: f, g ∈ L2(a, b) is equivalent to
∫ b
a f 2(x)dx

and
∫ b
a g2(x)dx exist and are finite. Then, for any α, β ∈ <, we have

∫ b

a
(αf + βg)2dx = α2

∫ b

a
f 2(x)dx + β2

∫ b

a
g2(x)dx + 2αβ

∫ b

a
f(x)g(x)dx

≤ α2
∫ b

a
f 2(x)dx + β2

∫ b

a
g2(x)dx

+ 2|αβ|
√∫ b

a
f 2(x)dx

√∫ b

a
g2(x)dx
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due to the Schwarz inequality. We can see that the integral is finite, so
that αf + βg ∈ L2(a, b).

b) C[a, b] is a function space,

c) Ck[a, b] = {f ∈ C[a, b] | f, f ′, . . . , f (k) ∈ C[a, b]} is a function space for
k = 1, 2, . . .

d) C∞[a, b] =
⋂∞

k=1 C(k)[a, b] is a function space.

Remark . The functions 1, x, . . . , xk are linearly independent in C∞[a, b]
for all k. That is why C∞[a, b] has no finite basis. In this case we say that
the dimension of C∞[a, b] (and of all the function spaces from a) – d) as well)
is infinite.

Definition . For arbitrary functions f1, . . . , fn from a function space F ,
we put

span(f1, . . . , fn) = {α1f1 + . . . + αnfn |α1, . . . , αn ∈ <}.

Theorem 1. span(f1, . . . , fn) is the least function space containing the
functions f1, . . . , fn. Functions f1, . . . , fn create a basis of span(f1, . . . , fn) if
and only if f1, . . . , fn are linearly independent.

Definition . We put Pk =span(1, x, . . . , xk) for k = 0, 1, . . .

10.2 Polynomial interpolation

Definition . Real numbers x0, x1, . . . , xn are called nodes whenever xi 6= xj

for all i 6= j.

PROBLEM. (Lagrange interpolation) For given nodes x0, x1, . . . , xn and
values y0, y1, . . . , yn, find a polynomial P ∈ Pn such that

P (xi) = yi for i = 0, 1, . . . , n. (29)

We call the polynomial P the interpolation polynomial (interpolant).

Theorem 2. For every nodes x0, x1, . . . , xn and values y0, y1, . . . , yn

there exists a unique interpolation polynomial P ∈ Pn.
Proof of existence of P :
I. The Lagrange form of P : We put

P (x) = y0L0(x) + y1L1(x) + . . . + ynLn(x), (30)
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where Li ∈ Pn, Li(xj) =

{
1 j − i
0 j 6= i

It is easy to see that

Li(x) =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

does satisfy all the above requirements.

Proof of unicity of P : If P, Q ∈ Pn satisfy (29) then (P −Q)(xi) = 0 for
i = 0, 1, . . . , n and P − Q ∈ Pn. Then P − Q is a zero polynomial, so that
P = Q.

Example . Find the interpolant for the data

xi -1 1 2 3
yi -6 -2 -3 2

We put

L0(x) =
(x− 1)(x− 2)(x− 3)

(−2)(−3)(−4)
= − 1

24
(x− 1)(x− 2)(x− 3)

L1(x) =
(x + 1)(x− 2)(x− 3)

2(−1)(−2)
=

1

4
(x + 1)(x− 2)(x− 3)

L2(x) = −1

3
(x + 1)(x− 1)(x− 2)

L3(x) =
1

8
(x + 1)(x− 1)(x− 2)

and we have P (x) = −6L0(x)− 2L1(x)− 3L2(x) + 2L3(x).

Remark . It is easy to see that the evaluation of the interpolant in
Lagrange form requires 2n2 + 2n operations of multiplication.

II. The Newton form of P : We find coefficients a0, a1, . . . , an such that

P (x) = a0 + a1(x− x0) + . . . + an(x− x0)(x− x1) . . . (x− xn−1) (31)

satisfies conditions (29). For i = 0, 1, . . . , n, we consecutively obtain

a0 = y0

a0 + a1(x1 − x0) = y1

a0 + a1(x2 − x0)(x2 − x1) = y2

...

a0 + a1(xn − x0) + . . . + an(xn − x0) . . . (xn − xn−1) = yn
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The solution of this system of equations with lower triangular matrix can be
described in the following recursive way. We can see immediately that

a0 = y0, a1 =
y1 − y0

x1 − x0

and it can be proved that

ai = y(x0, x1, . . . , xi) for i = 1, 2, . . . , n,

where the expressions

y(xi, xi+1) =
yi+1 − yi

xi+1 − xi

for i = 0, . . . , n− 1,

y(xi, xi+1, xi+2) =
y(xi+1, xi+2)− y(xi, xi+1)

xi+2 − xi

for i = 0, . . . , n− 2

...

y(x0, . . . , xn) =
y(x1, . . . , xn)− y(x0, . . . , xn−1)

xn − x0

are called the divided differences of the first, second,. . ., n–th order consecu-
tively. Hence the Newton interpolation polynomial P is of the form

P (x) = y0 + y(x0, x1)(x− x0) + . . . + y(x0, x1, . . . , xn)(x− x0) . . . (x− xn−1).
(32)

Example . Determine the Newton interpolation polynomial for the data

xi -1 1 2 3
yi -6 -2 -3 2

We compute the necessary divided differences mechanically by filling in the
following table according to the recursive formula.

xi yi y(xi, xi+1) y(xi, xi+1, xi+2) y(x0, x1, x2, x3)
-1 -6 2 1 -0.25
1 -2 5 0
2 -3 5
3 2

Hence we have

P (x) = −6 + 2(x + 1) + (x + 1)(x− 1)− 0.25(x + 1)(x− 1)(x− 2)
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Remark . Construction of the Newton form of interpolation polynomial
is effective and, with this form, basic computations are effective, too. For
example, evaluation of the Newton polynomials by the so–called generalized
Horner scheme is of the same complexity as the Horner scheme for polyno-
mials in standard for m. For example, evaluation the generalized Horner
scheme for the preceding polynomial P consists in the following:

P (x) = −6 + (x + 1) (2 + (x− 1) (1− 0.25(x− 2)))

You can see that the number on multiplications is equal to the degree of the
polynomial as in the case of the Horner scheme. Contrary to the Lagrange
form, modifications of the Newton form are very simple. For example, add
the node x4 = 0 and value y4 = −4 into the above table.

Definition . We call the nodes x0, x1, . . . , xn equidistant whenever there
exists a step h > 0 such that xi = x0 + ih for i = 1, . . . , n.

In the case of equidistant nodes, the Newton interpolation polynomial
attains the following more simple form.

Definition . We call the expressions

∆yi = yi+1 − yi, i = 0, . . . , n− 1

∆2yi = ∆yi+1 −∆yi, i = 0, . . . , n− 2
...

∆ny0 = ∆n−1y1 −∆n−1y0

the first, second,. . . , n-th differences, respectively.

A comparison with the divided differences gives us

y(xi, xi+1) =
∆yi

h
, i = 0, . . . , n− 1

y(xi, xi+1, xi+2) =
∆2yi

2!h2
, i = 0, . . . , n− 2

...

y(x0, . . . , xn) =
∆ny0

n!hn

and we obtain the following Newton interpolation polynomial for equidistant
nodes:

P (x) = y0 +
∆yi

h
(x− x0) + . . . +

∆ny0

n!hn
(x− x0) . . . (x− xn−1)
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The differences can be computed by filling in an analogical triangular table
as in the case of divided differences.

The error of approximation of a smooth function by its interpolation
polynomial is characterized in the following theorem.

Theorem 3. Let f ∈ Cn+1[a, b] and P ∈ Pn be the interpolant of f in
the nodes a ≤ x0 < x1 < . . . < xn ≤ b. Then for every x ∈ [a, b] there exists
ξ ∈ (a, b) such that

f(x) = P (x) +
f (n+1)(ξ)

(n + 1)!
ω(x) (33)

with ω(x) = (x− x0)(x− x1) . . . (x− xn).
Proof. a) We use the Rolle Theorem saying that if ϕ ∈ C1[α, β] and

ϕ(α) = 0 = ϕ(β) then ϕ′(ξ) = 0 for some ξ ∈ (α, β).

b) Let x ∈ [a, b], x /∈ {x0, x1, . . . , xn} be arbitrary. Then the function

g(t) = P (t)− f(t)− ω(t)

ω(x)
(P (x)− f(x))

has n + 2 roots x, x0, x1, . . . , xn and g ∈ Cn+1[a, b]. Then, by repeated appli-
cation of the Rolle Theorem, we consecutively obtain

g′ has n + 1 roots in (a, b)

g′′ has n roots in (a, b)
...

g(n+1) has 1 root ξ in (a, b).

As P (n+1) = 0 and ω(n+1) = (n + 1)!, we have

0 = g(n+1)(ξ) = −f (n+1)(ξ)− (n + 1)!

ω(x)
(P (x)− f(x)).

But then

f(x) = P (x) +
f (n+1)(ξ)

(n + 1)!
ω(x). (34)

Remark . (The Runge phenomenon) If the nodes x0, x1, . . . , xn are
equidistant and n is large then the values of ω(x) for x near to the point a
or b are essentially greater than the values of ω(x) for x near to the centre
of [a, b]. This determines similar relation between the values of the error
f(x)− P (x).
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There exist various ways how to overcome the Runge phenomenon. Now,
we present a suitable choice of non–equidistant nodes x0, x1, . . . , xn, so that
maxima of ω(x) in the intervals (xi, xi+1) are the same.

Definition . The polynomials T0(x) = 1, T1(x) = x, and

Tk(x) = 2xTk−1(x)− Tk−2(x), k = 2, 3, . . .

are called Chebyshev polynomials.

Obviously, we have

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

and so on. These examples illustrate the validity of the following theorem.

Theorem 4. The following statements a) – e) are valid.

a) The degree of Tn(x) is equal to n and the coefficient at xn in Tn(x) is
2n−1 for n = 1, 2, . . .

b) T2m(x) = T2m(−x) and T2m+1(x) = −T2m+1(−x) for m = 0, 1, . . . and
for all x ∈ <.

c) Tn(x) = cos(n arccos x) for all x ∈ [−1, 1] and for n = 0, 1, . . .

d) For every n > 0, Tn(x) has n distinct roots

xk = cos

(
(2k + 1)π

2n

)
for k = 0, 1, . . . , n− 1

The points xk are called Chebyshev nodes.

e) max−1≤x≤1 |Tn(x)| ≤ 1 for n = 0, 1, . . .
Proof. The statements a), b) follow directly from definition.
Proof of c). If k ≥ 2 then

cos(kΘ) = cos(2Θ) cos((k − 2)Θ)− sin(2Θ) sin((k − 2)Θ).

Then, by means of the identities

cos(2Θ) = cos2 Θ− sin2 Θ = 2 cos2 Θ− 1, sin(2Θ) = 2 cos Θ sin Θ,
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we obtain

cos(kΘ) = 2 cos Θ [cos Θ cos((k − 2)Θ)− sin Θ sin((k − 2)Θ)]

− cos((k − 2)Θ)

= 2 cos Θ cos((k − 1)Θ)− cos((k − 2)Θ)

for all x ∈ [−1, 1]. If we put

Θ = arccos x ⇐⇒ cos Θ = x for x ∈ [−1, 1]

then we obtain

cos(k arccos x) = 2x cos((k − 1) arccos x)− cos((k − 2) arccos x) (35)

for all x ∈ [−1, 1]. Now we have

T0(x) = 1 = cos(0 arccos x), T1(x) = x = cos(1 arccos x)

and, by induction, if Tk(x) = cos(k arccos x) for k = 2, . . . , n− 1 then

Tn(x) = 2xTn−1(x)− Tn−2(x)

= 2x cos((n− 1) arccos x)− cos((n− 2) arccos x)

= cos(n arccos x)

due to (35).
Proof of d). cos(n arccos x) = 0 for x ∈ [0, π]

⇐⇒ n arccos x =
(2k + 1)π

2
for

(2k + 1)π

2
∈ [0, nπ]

⇐⇒ arccos x =
2k + 1

2n
π for

2k + 1

2n
π ∈ [0, π]

⇐⇒ x = cos

(
2k + 1

2n
π

)
for

2k + 1

2n
∈ [0, 1].

The statement e) follows by c) immediately.

For n ≥ 1, the Chebyshev polynomial Tn(x) is of degree n, its roots are
just the Chebyshev nodes x0, x1, . . . , xn and the coefficient at xn is 2n−1. The
polynomial ω(x) = ωC(x) related to the Chebyshev nodes also is of degree n,
its roots are just the Chebyshev nodes and the coefficient at xn is 1. Hence we
have 21−nTn(x) = ωC(x) and, due to Theorem 3 e), max−1≤x≤1 ωC(x) = 21−n.
The following theorem says that this maximum is the least one among all
functions ω(x) related to all choices of n + 1 nodes in [−1, 1].
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Theorem 5. For a fixed n > 0, among all polynomials ω(x) related
to all possible choices of the nodes x0, x1, . . . , xn ∈ [−1, 1], the polynomial
ωC(x) = 21−nTn(x) is a unique polynomial satisfying

21−n = max
−1≤x≤1

|ωC(x)| ≤ max
−1≤x≤1

|ω(x)|.

10.3 Cubic splines

If the interval [a, b] is long and the number of nodes a = x0 < x1 < . . . < xn =
b is large, instead of one interpolation polynomial of a high degree, we com-
pose the interpolant on [a, b] by (generally mutually different) polynomials
of low degree on [xi−1, xi] for i = 1, . . . , n.

If the low degree is equal to one, we speak about linear splines. At this
moment, we only tough this important class of interpolants by illustrating
the solution of the problem of Lagrange interpolation by the linear spline in
Fig. 18.

-
x

6y

y0

x0

y1

x1

y2

x2

y3

x3

Figure 18

We devote more attention to the so–called cubic splines.

Definition . Let a = x0 < x1 < . . . < xn = b for some n > 1. A cubic
spline with nodes x0, . . . , xn is every function s on [a, b] such that

a) s(x) = si(x) for xi−1 ≤ x ≤ xi and si ∈ P3 for i = 1, . . . , n.

b) s ∈ C2[a, b].

Condition b) is equivalent to

si(x) = si+1(x)

s′i(x) = s′i+1(x)

s′′i (x) = s′′i+1(x)

for i = 1, . . . , n− 1.

PROBLEM. For given nodes a = x0 < x1 < . . . < xn = b (n > 1) and
values y0, y1, . . . , yn, find a cubic spline s(x) with nodes x0, x1, . . . , xn such
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that
s(xi) = yi for i = 0, 1, . . . , n. (36)

If yi = f(xi) then we call s an interpolation cubic spline of f in x0, x1, . . . , xn.

Theorem 6. Let us put bi = xi − xi−1 for i = 1, . . . , n. If s is a cubic
spline in x0, x1, . . . , xn satisfying (36) then, for i = 1, . . . , n, we have

si(x) = Ci−1
(xi − x)3

6hi

+ Ci
(x− xi−1)

3

6hi

(37)

+

(
yi−1 −

Ci−1h
2
i

6

)
xi − x

hi

+

(
yi −

Cih
2
i

6

)
x− xi−1

hi

and the parameters C0, C1, . . . , Cn satisfy the equations

hk

6
Ck−1 +

hk + hk+1

3
Ck +

hk+1

6
Ck+1 =

yk+1 − yk

hk+1

− yk − yk−1

hk

for k = 1, . . . , n− 1.
Proof. If s(x) is a cubic spline with nodes x0, x1, . . . , xn then s′′(x) is a

linear spline with nodes x0, x1, . . . , xn Hence there exist values C0, C1, . . . , Cn

such that
s′′(xi) = Ci for i = 0, 1, . . . , n

and

s′′i (x) = Ci−1
xi − x

hi

+ Ci
x− xi−1

hi

for x ∈ [xi−1, xi]. (38)

Here i = 0, 1, . . . , n. Due to (38), we have s′′ ∈ C[a, b]. Integrating (38)
two–times, we obtain

si(x) = Ci−1
(xi − x)3

6hi

+ Ci
(x− xi−1)

3

6hi

+ αi(xi − x) + βi(x− xi−1),

where αi, βi ∈ < are arbitrary integration constants. If we require si(xi−1) =
yi−1 and si(xi) = yi, we obtain (37). Thus, we have proved s ∈ C[a, b] and
(36). Differentiating (37), we obtain

s′i(x) = −Ci−1
(xi − x)2

2hi

+ Ci
(x− xi−1)

2

2hi

+
yi − yi−1

hi

− Ci − Ci−1

6
hi.

As

s′i(xi−1) = −Ci−1
hi

3
− Ci

hi

6
+

yi − yi−1

hi

,

s′i(xi) = Ci
hi

3
+ Ci−1

hi

6
+

yi − yi−1

hi

,
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we obtain that si+1(xi) = s′i(xi) is equivalent to the equation

Ci−1
hi

6
+ Ci

hi + hi+1

3
+ Ci+1

hi+1

6
=

yi − yi−1

hi

− yi+1 − yi

hi+1

(39)

for i = 1, . . . , n− 1. If (39) is valid then s′ ∈ C[a, b].

Remark . 1. As (39) is a system of n− 1 equations in n + 1 unknowns
C0, C1, . . . , Cn, the spline s is not determined uniquely. Most often, the
equations

C0 = 0 = Cn (40)

are added. Cubic splines satisfying (40), i. e.

s′′(a) = 0 = s′′(b),

are called natural.

2. With C0 = 0 = Cn, (39) is a system of linear equations with strongly
diagonally dominated three–diagonal matrix.

The following statement says that the L2−norm of the second derivative
of the interpolation cubic spline (the curvature of the cubic spline) is the
least among all interpolants with the same values in the same nodes. This
excludes the Runge phenomenon and is the main reason why the cubic splines
are so popular.

Theorem 7. Let n > 1, a = x0 < x1 < . . . < xn = b and f ∈ C2[a, b].
If s is a natural cubic spline with nodes x0, x1, . . . , xn and s(xi) = f(xi) for
i = 0, 1, . . . , n then ∫ b

a
s′′2(x) dx ≤

∫ b

a
f ′′2(x) dx.

Proof. Integrating by parts, we obtain∫ b

a
(f ′′ − s′′)s′′dx = [(f ′ − s′) · s′′]ba −

∫ b

a
(f ′ − s′)s′′′dx.

As s′′(a) = 0 = s′′(b) and s′′′ is a constant Ki = s′′′i on the interval (xi−1, xi)
for i = 1, . . . , n, we have∫ b

a
(f ′ − s′)s′′′dx =

n∑
i=1

∫ xi

xi−1

(f ′ − s′)Kidx =
n∑

i=1

Ki[(f − s)(x)]xi
xi−1

= 0,

we obtain ∫ b

a
(f ′′ − s′′)s′′dx = 0.
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Then ∫ b

a
f ′′2dx =

∫ b

a
(f ′′ − s′′)2dx + 2

∫ b

a
(f ′′ − s′′)s′′dx +

∫ b

a
s′′2dx

=
∫ b

a
(f ′′ − s′′)2dx +

∫ b

a
s′′2dx

≥
∫ b

a
s′′2dx.

10.4 Hermite interpolation

PROBLEM (Hermite interpolation – osculation) For given nodes a = x0 <
x1 < . . . < xn = b and for a given function f ∈ C1[a, b], find a polynomial
H ∈ P2n+1 such that

H(xi) = f(xi) and H ′(xi) = f ′(xi) for i = 0, 1, . . . , n. (41)

Remark . There exists a unique Hermite interpolation polynomial H ∈
P2n+1 satisfying (41).

Construction I. We search coefficients a0, . . . , a2n+1 ∈ < such that

H(x) = a0 +a1x+ . . .+a2n+1x
2n+1, H ′(x) = a1 +2a2x+ . . .+a2n+1x

2n (42)

satisfy the conditions (41). We find the values of a0, a1, . . . , a2n+1 by solving
the 2n + 2 equations which we obtain by putting the forms (42) into (41).

Example . (Standard form of H) Find the Hermite interpolation poly-
nomial of the function f in the nodes from the following table.

i xi f(xi) f ′(xi)
0 -1 2 1
1 1 0 1

As n = 1, we have H(x) = a0 + a1x + a2x
2 + a3x

3 ∈ P3 and H ′(x) =
a1 + 2a2x + 3a3x

2. If we insert the values of x0 = −1 and x1 = 1 into (41),
we obtain the following system of four linear equations for the unknown
coefficients a0, . . . , a3.

a0 − a1 + a2 − a3 = 2

a1 − 2a2 + 3a3 = 1

a0 + a1 + a2 + a3 = 0

a1 + 2a2 + 3a3 = 1
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It is easy to see that this system has the solution a0 = 1, a1 = −2, a2 =
0, a3 = 1, so that H(x) = 1− 2x + x3.

Construction II. (Generalized Newton form) As we have two values for
every node, we insert every node two times into the table. Then we have to
evaluate the divided difference f(xi, xi) which has no sense. If we evaluate
this divided difference as a limit of f(xi, x) as x approaches xi, we obtain

f(xi, xi) = lim
x−→xi

f(xi, x) = lim
x−→xi

f(x)− f(xi)

x− xi

= f ′(xi).

Hence we use the known values f ′(xi) for f(xi, xi) and the Hermite interpo-
lation polynomial is of the form

H(x) = f(x0) + f(x0, x0)(x− x0) + f(x0, x0, x1)(x− x0)
2

+f(x0, x0, . . . , xn, xn)(x− x0)
2 . . . (x− xn−1)

2(x− xn)

Example . Express the Hermite interpolation polynomial in the gener-
alized Newton form for the data from the following table.

i xi f(xi) f ′(xi)
0 -1 2 1
1 1 0 1
2 2 1 3

The generalized Newton scheme is apparent from the following table

xi f(xi) . . .
-1 2 1 -1 1 -4

9
11
27

-1 2 -1 1 -1
3

7
9

1 0 1 0 2
1 0 1 2
2 1 3
2 1

and the resulting Hermite interpolation polynomial is

H(x) = 2 + x + 1− (x + 1)2 + (x + 1)2(x− 1)

− 4

9
(x + 1)2(x− 1)2 +

11

27
(x + 1)2(x− 1)2(x− 2)

The following type of interpolant is widely used because of simplicity of
construction and of some further useful properties.
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Definition . A Hermite cubic spline with nodes a = x0 < x1 < . . . <
xn = b is any function such that

a) s = si ∈ P3 on [xi−1, xi] for i = 1, . . . , n

b) s ∈ C1[a, b].

If f ∈ C1[a, b] and s satisfies

s(xi) = f(xi), s′(xi) = f ′(xi) for i = 0, 1, . . . , n

then we say that s is a Hermite interpolation cubic spline of f in the nodes
x0, x1, . . . , xn.

Remark . For i = 1, . . . , n, the cubic polynomial si is determined by

si(xi−1) = f(xi−1) s′i(xi−1) = f ′(xi−1)
si(xi) = f(xi) s′i(xi) = f ′(xi)

uniquely. We can use the constructions of the Hermite interpolation polyno-
mial.

Example . Find the Hermite cubic spline for the data from the following
table.

i xi f(xi) f ′(xi)
0 -1 2 1
1 1 0 1
2 2 1 3

It is easy to compute by means of Construction I for example that

s(x) =

{
s1(x) = 2 + (x + 1)− (x + 1)2 + (x + 1)2(x− 1) for x ∈ [−1, 1]
s2(x) = x− 1 + (x− 1)2(x− 2) for x ∈ [1, 2]

10.5 The least squares method (LSM)

This is another widely used general idea due to Gauss.

Definition . Let L be a normed vector space, F be a finite–dimensional
subspace of L and f be an arbitrary element from L. We say that f̃ ∈ F is
the best approximation of f (from F) whenever

‖f − f̃‖ ≤ ‖f − g‖ for all g ∈ F . (43)
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In this section we assume that there exists a scalar product 〈·, ·〉 on L
such that

‖x‖ =
√
〈x, x〉 ∀x ∈ L.

Let ϕ1, . . . , ϕn be a basis of F . Then (43) is equivalent to

‖f − f̃‖2 ≤ ‖f − g‖2 ∀g ∈ F ,

〈f − f̃ , f − f̃〉 ≤ 〈f − g, f − g〉 ∀g ∈ F

consecutively. Hence there exist coefficients x̃1, . . . , x̃n such that f̃ = x̃1ϕ1 +
. . .+ x̃nϕn. If we insert this form of f̃ into the last inequality then we obtain
the problem to find x̃1, . . . , x̃n ∈ < such that the value of

F (x̃1, . . . , x̃n) ≡ 〈f − x̃1ϕ1 − . . .− x̃nϕn, f − x̃1ϕ1 − . . .− x̃nϕn〉

is minimal. Necessary conditions for a minimum of F are

∂F

∂xi

= 0 for i = 1, . . . , n.

As

F (x1, . . . .xn) = 〈f, f〉 − 2
n∑

k=1

xk〈f, ϕk〉+
n∑

k=1

n∑
m=1

xkxm〈ϕk, ϕm〉,

we have

1

2

∂F

∂xi

= −〈f, ϕi〉+
n∑

j=1

xj〈ϕj, ϕi〉 = 0 for i = 1, . . . , n.

These equations have the following matrix form
〈ϕ1, ϕ1〉 〈ϕ2, ϕ1〉 . . . 〈ϕn, ϕ1〉
〈ϕ1, ϕ2〉 〈ϕ2, ϕ2〉 . . . 〈ϕn, ϕ2〉

...
...

...
〈ϕ1, ϕn〉 〈ϕ2, ϕn〉 . . . 〈ϕn, ϕn〉




x1

x2
...

xn

 =


〈f, ϕ1〉
〈f, ϕ2〉

...
〈f, ϕn〉

 . (44)

They are called normal equations.

Theorem 8. The normal equations have exactly one solution [x̃1, . . . , x̃n]>

and

f̃ = x̃1ϕ1 + . . . + x̃nϕn

is the best approximation of f in the space F .
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Proof. a) The matrix M of the system (44) is symmetric positive definite:
M is symmetric obviously. For x ∈ <n, x 6= o denote

fx = x1ϕ1 + . . . + xnϕn.

Then fx 6= o because x 6= o and ϕ1, . . . , ϕn are linearly independent. Then
Mx = [〈fx, ϕ1〉, . . . , 〈fx, ϕn〉]> and x>Mx = 〈fx, fx〉 = ‖fx‖2 > 0.

Due to a), the system (44) has exactly one solution x̃.

b) 〈f̃ − f, g〉 = 0 ∀g ∈ F : It is easy to see that (44) is equivalent to

〈f̃ − f, ϕi〉 = 0 for i = 1, . . . , n. (45)

Now (45) and the linearity of the scalar product give us b).

c) f̃ is the best approximation of f : By means of b), we have

‖f − g‖2 = ‖(f − f̃) + (f̃ − g)‖2

= 〈(f − f̃) + (f̃ − g), (f − f̃) + (f̃ − g)〉
= 〈f − f̃ , f − f̃〉+ 2〈f − f̃ , f̃ − g〉+ 〈f̃ − g, f̃ − g〉
= ‖f − f̃‖2 + ‖f̃ − g‖2 ≥ ‖f − f̃‖2

Definition . If the normed space L is a subspace of

{
<n

L2(a, b)

}
then

we speak about a

{
discrete

continuous

}
least squares method.

Now, we present typical applications of the LSM. In Example 1, we use
the LSM for an apprixomate solution of an overdetermined system of linear
equations, Example 2 is a continuous LSM used for an approximation of a
function and in Example 3, which is an approximation of function by the
discrete LSM, we show that certain problems have to be reformulated before
an application of the LSM.

Example 1. In order to determine the heights xA, xB, xC of the points
A, B, C, the following six heights or differences of heights have been measured:

xA = 1
−xA +xC = 1

xB = 2
−xB +xC = 2

xC = 3
−xA +xB = 1
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This system of 6 equation in 3 unknowns is equivalent to the problem

xA



1
−1
0
0
0
−1


+ xB



0
0
1
−1
0
1


+ xC



0
1
0
1
1
0


=



1
1
2
2
3
1


.

Hence, if we denote by ϕA, ϕB, ϕC the vector multiplied by xA, xB, xC , con-
secutively, and by f the vector on the right–hand side of this system, we
obviously cannot expect that we find an exact solution. In the solution by
the least squares method, we search a vector f̃ = xAϕA + xBϕB + xCϕC , so
that ‖f − f̃‖2 is minimal. The normal equations are of the form

3 -1 -1 -1
-1 3 -1 1
-1 -1 3 6

and its solution is xA = 1.25, xB = 1.75, xC = 3. These are the approxima-
tions of the heights of the points A, B, C.

Example 2. Find the best approximation of sin x ∈ L2(0, π/2) in the
space span(1, x).

We put ϕ1 = 1, ϕ2 = x and f(x) = sin x. Then we

〈ϕ1, ϕ1〉 =
∫ π

2
0 dx = π

2
, 〈ϕ2, ϕ1〉 =

∫ π
2

0 x dx = π2

8
, 〈f, ϕ1〉 =

∫ π
2

0 sin x dx = 1

〈ϕ2, ϕ2〉 =
∫ π

2
0 x2 dx = π3

24
, 〈f, ϕ2〉 =

∫ π
2

0 x sin x dx = 1,

so that the normal equations are of the form

π
2

π2

8
1

π2

8
π3

24
1

and have the solution x̃1 = 8(π − 3)/π2 .
= 0.11477, x̃2 = 24(4 − π)/π3 =

0.66444, so that the LSM approximation of sin x from span(1, x) is the func-
tion f̃ = 0.11477 + 0.66444x.

Example 3. Comet Tentax moves on an elliptic orbit. In polar coordi-
nates, the following positions of Tentax have been measured:

α 48o 67o 83o 108o 126o

r 2.70 2.00 1.61 1.20 1.02
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The Kepler law says that

r ≡ r(α) =
p

1− e cos α
, (46)

where the unknown parameter p characterizes the size of the ellipse and e is
its eccentricity.

In the LSM, we approximate a given function f by a function f̃ which
is a linear combination x̃1ϕ1 + . . . + x̃nϕn of given functions ϕ1, . . . , ϕn with
unknown parameters x̃1, . . . , x̃n.

In this problem, the unknown parameters x̃1 = p, x̃2 = e do not create
any linear combination with given functions. But, if we multiply both sides
of (46) by 1− e cos α, we obtain

r = p + e r cos α (47)

and we interpret this identity as a problem to approximate a function r given
in the table as linear combination of the constant function ϕ̃1 = 1 and the
given function ϕ̃2 = r cos α. The table gives us values of the functions ϕ̃1, ϕ̃2

in the five arguments α from the table. For this reason, we do not work in
any function space, but in the vector space <5. We approximate the vector

f =


2.70
2.00
1.61
1.20
1.02


as a linear combination of the vectors

ϕ1 =


1
1
1
1
1

 and ϕ2 =


1.81
0.78
0.20
−0.37
−0.60


The resulting normal equations are

5 1.82 8.53
1.82 3.43 5.10

and its solution is p = 1.44, e = 0.72. Hence the Kepler law for this comet is
approximately

r(α) =
1.44

1− 0.72 cos α
.
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10.6 The (discrete) min–max approximations

Definition . Let the nodes x1, . . . , xN and values y1, . . . , yN (points [x1, y1],
. . . , [xN , yN ]) be arbitrary. For a polynomial p ∈ Pn, we put

hi = p(xi)− yi and H = max
1≤i≤N

|hi|.

We say that p is a min–max (Chebyshev) approximation (polynomial) when-
ever H is the smallest possible.

Definition . We say that p ∈ Pn is the min–max polynomial if and only
if p has the following equal–error property: There exists H ∈ < such that

p(xi)− yi = ±H

in at least n + 2 points with alternating sign.
We prove the following general statement in the case n = 1 only.

Theorem 9. For every positive integer n there exists a unique min–max
polynomial p ∈ Pn for all points [x1, y1], . . . , [xN , yN ] such that N ≥ n + 2.

Theorem 10. For any points [x1, y1], [x2, y2], [x3, y3] there is exactly one
p ∈ P1 such that

p(xi)− yi = ±E for i = 1, 2, 3

with alternating sign.
Proof. a) Let p(x) = Mx + B, pi = Mxi + B = yi + hi for i = 1, 2, 3.

Then

(x3 − x2)p1 − (x3 − x1)p2 + (x2 − x1)p3 =

(x3 − x2)(Mx1 + B)− (x3 − x1)(Mx2 + B) + (x2 − x1)(Mx3 + B) =

M [(x3 − x2)x1 − (x3 − x1)x2 + (x2 − x1)x3] +

B[(x3 − x2)− (x3 − x1) + (x2 − x1)] = 0.

If we put β1 = x3 − x2, β2 = x3 − x1 and β3 = x2 − x1 then we have proved

β1p1 − β2p2 + β3p3 = 0 ∀p ∈ P1 (48)

b) If x1 < x2 < x3, i. e. β1 > 0, β2 > 0, β3 > 0, then there exists a unique
line with

h1 = h, h2 = −h, h3 = h :

If p1 = y1 + h, p2 = y2 − h, p3 = y3 + h then

β1(y1 + h)− β2(y2 − h) + β3(y3 + h) = 0
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by (48) and this equality gives us

h = −β1y1 − β2y2 + β3y3

β1 + β2 + β3

. (49)

Hence there exists at most one line passing through P1 = [x1, y1 + h], P2 =
[x2, y2− h], P3 = [x3, y3 + h]. By means of (48), we can prove that the slopes

y2 − y1 − 2h

x2 − x1

of P1P2 and
y3 − y2 + 2h

x3 − x2

of P2P3

are the same. (Prove as an exercise.) Hence there is exactly one p ∈ P1

satisfying b).

Definition . The polynomial p from Theorem 9 is said to be an equal–
error line for the points [x1, y1], [x2, y2], [x3, y3].

Example . Find the equal–error line for the points [0, 0], [1, 0.5], [3, 3].
As x1 = 0, x2 = 1, x3 = 3, we have β1 = 2, β2 = 3, β3 = 1. Then

h = −2 · 0− 3 · 0.5 + 1 · 3
6

= −1

4

and our line passes through the points [0,−1
4
], [1, 3

4
], [3, 11

4
]. See Fig. 19.
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Figure 19

Theorem 11. The equal–error line from Th. 9 is the unique min–max
line for [x1, y1], [x2, y2], [x3, y3].

Proof. a) The errors of the equal–error line are h,−h, h. Let h1, h2, h3 be
the errors of another line y = p(x) and put H = max(|h1|, |h2|, |h3|). Then
p1 = y1 + h1, p2 = y2 + h2, p3 = y3 + h3 and by (49), (48),

h = −β1(p1 − h1)− β2(p2 − h2) + β3(p3 − h3)

β1 + β2 + β3

=
β1h1 − β2h2 + β3h3

β1 + β2 + β3

. (50)

As βi > 0, the absolute value of the right–hand side increases if we replace
h1, h2, h3 by H,−H, H, respectively. We get h ≤ H.
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b) The min–max line is unique: |h| = H if and only if |hi| = H by a) and
the signs alternate. Then the given line is the Chebyshev polynomial.

Now, we can describe the exchange method for given N–tuple [x1, y1], . . . ,
[xN , yN ] of points:

Step 1. If x1 < x2 < x3 then choose the triple [x1, y1], [x2, y2], [x3, y3]. If the
assumption is not valid, choose any other triple with this property.

Step 2. Find the Chebyshev line p and the error h of the given triple.

Step 3. Compute the errors p(xi)− yi of all the points given and denote by H
the largest absolute value of them.

Step 4. (Exchange step) Add a data point such that |hi| = Hto the old triple
and discard one of the former points such that the new triple has errors
with alternating signes. Return to Step 2.

We prove:

I. After a finite number of the exchange steps, |h| = H : Every new triple
has errors |h|, |h|, H with sign alternating and |h| < H. The new min–max
line has errors h∗,−h∗, h∗ with

h∗ =
β1h− β2h + β3H

β1 + β2 + β3

(see (50)), so that

|h∗| = β1|h|+ β2|h|+ β3H

β1 + β2 + β3

> |h|

as H > |h|. Hence no triple is choosen twice and procedure terminates.

II. The last Chebyshev line (such that |h| = H) is the min–max line of
the given N–tuple of points: The errors h1, . . . , hN of any other line satisfy
|h| ≤ max |hi| for hi belonging to the last triple, so that |h| ≤ max1≤i≤N |hi|.

Example . For the data from the following table

xi 1 6 14 16 25 29
yi 2 3 5 4 8 14

,

find the min–max polynomial.
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Let us choose the first triple [1, 2], [6, 3], [14, 5]. Then p1(x) = 1.6923 +
0.2308x and the errors are

i 1 2 3 4 5 6
p1(xi)− yi -0.07 0.07 -0.07 1.38 -0.54 -5.62

.

The result of the exchange step is the new triple [1, 2], [6, 3], [29, 14] and we
obtain p2(x) = 1 + 0.4286x with the errors

i 1 2 3 4 5 6
p2(xi)− yi -0.57 0.57 2 3.86 3.71 -0.57

.

The exchange step gives us the triple [1, 2], [16, 4], [29, 14] and we obtain
p3(x) = −0.6429 + 0.4286x with the errors

i 1 2 3 4 5 6
p3(xi)− yi -2.21 -1.07 0.35 2.21 2.07 -2.21

.

As in this case H = |h| = 2.21, p2(x) is the min–max polynomial for this set
of points.

The exchange method can be used for polynomials of any positive degree
n in an obvious manner. For an illustration of this modification, consider the
following example.

Example . Find the min–max parabola for the data

i 1 2 3 4 5
xi -2 -1 0 1 2
yi 2 1 0 1 2

For the initial quadruple related to i = 1, 2, 3, 4, we construct the quadratic
polynomial p1(x) = a + bx + cx2 satisfying p1(xi)− yi = ±h alternately, i. e.

a −2b +4c −2 = h
a −b +c −1 = −h
a = h
a +b +c −1 = −h

This system of linear equations has the solution

a =
1

4
, b = 0, c =

1

2
, d =

1

4
,

so that p1(x) = 1
4

+ 1
2
x2. As

i 1 2 3 4 5
p1(xi)− yi

1
4

−1
4

1
4

−1
4

1
4
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we have H = 1
4

= |h|. Then p1(x) is the min–max polynomial.

Exercise. Starting with p1 from the previous example, find the min–max
parabola for y = |x| at the points x = −3,−2,−1, 0, 1, 2, 3.

11 Numerical differentiation

PROBLEM. Approximate the values of the derivatives f ′(x), f ′′(x) of a suffi-
ciently smooth function f in a fixed point x by means of the values f(x−h),
f(x), f(x + h) for some discretization step h > 0.

If we approximate the function f(t) by the interpolation polynomial

a) P+(t) = f(x) + f(x+h)−f(x)
h

(t− x) then we obtain

f ′(x)
.
=

dP+

dt
(x) =

f(x + h)− f(x)

h
= f(x, x + h).

b) P−(t) = f(x− h) + f(x)−f(x−h)
h

(t− x + h) then

f ′(x)
.
=

dP−
dt

(x) =
f(x)− f(x− h)

h
= f(x− h, x).

c) P2(t) = f(x−h)+f(x−h, x)(t−x+h)+f(x−h, x, x+h)(t−x+h)(t−x)
then we can easily verify that

f ′(x)
.
=

dP2

dt
(x) =

f(x + h)− f(x− h)

2h
.

The characterizations of the accuracy of these approximations are presented
in the following theorem.

Theorem 1. The following statements a) – d) are valid.

a) If f ∈ C2[x, x + h] then

f ′(x) =
f(x + h)− f(x)

h
− h

2
f ′′(ξ)

for some ξ ∈ (x, x + h).

b) If f ∈ C2[x− h, x] then

f ′(x) =
f(x)− f(x− h)

h
+

h

2
f ′′(ξ)
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for some ξ ∈ (x− h, x).

c) If f ∈ C3[x− h, x + h] then

f ′(x) =
f(x + h)− f(x− h)

2h
− h2

6
f ′′′(ξ)

for some ξ ∈ (x− h, x + h).

d) If f ∈ C4[x− h, x + h] then

f ′′(x) =
f(x− h)− 2f(x) + f(x + h)

h2
− h2

12
f (4)(ξ)

for some ξ ∈ (x− h, x + h).
Instead of a complete proof, we illustrate the standard method of proving

statements of this kind only.
Proof of a). Due to the Taylor Theorem, we have f(x + h) = f(x) +

f ′(x)h + 1
2
f ′′(ξ)h2 for a suitable ξ ∈ (x, x + h) and the statement a) follows.

Proof of c). Again, by means of the Taylor Theorem, we obtain

f(x + h) = f(x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

6
f ′′′(ζ)h3

f(x− h) = f(x)− f ′(x)h +
1

2
f ′′(x)h2 − 1

6
f ′′′(η)h3

By subtracting the second equation from the first one and by dividing the
difference by two, we obtain

f(x + h)− f(x− h)

2h
= f ′(x) +

1

6
h2

[
f ′′′(ζ) + f ′′′(η)

2

]
.

The Mean Value Theorem says that there exists a ξ between the points ζ, η
such that the expression in the rectangular brackets is equal to f ′′′(ξ). 2

Remark . The approximations from Theorem 1 are not applicable to
h extremely small because of essential influence of round–off errors. It is
possible to obtain accurate approximations of f ′(x) or f ′′(x) without any use
of extremely small discretization step h by extrapolation. For example, if we
put

D2(h) =
f(x− h)− 2f(x) + f(x + h)

h2

then Theorem 1 d) tells us, roughly, that

f ′′(x)
.
= D2(h) + Ch2

f ′′(x)
.
= D2(2h) + C(2h)2

85



for a suitable C. If we multiply the first equation by 4, the second by (-1),
add them and divide by 3, we obtain

f ′′(x)
.
=

4D2(h)−D2(2h)

3
.

This approximation of f ′′(x) is essentially more accurate than that one from
Theorem 1 c).

12 Numerical integration

Our aim is to approximate the value of

I ≡ I(f) =
∫ b

a
f(x) dx (51)

for a given function f on a given interval [a, b]. In this section, we briefly
mention the most simple and most important tools for the solution of this
problem.

12.1 Rectangular, trapezoidal and Simpson rules

Definition . In the following considerations, we denote by s the midpoint
of the interval [a, b], i. e. we put

s =
a + b

2
.

If we substitute f(x) in (51) by
a) the constant P0(x) = f(s), we obtain the following rectangular rule

I = (b− a)f(s) + eR(f).

b) the linear polynomial P1(x) = f(a) + f(a, b)(x − a), we obtain the
following trapezoidal rule

I =
b− a

2
[f(a) + f(b)] + eT (f).

c) the quadratic polynomial P2(x) = f(a)+ f(a, s)(x− a)+ f(a, s, b)(x−
a)(x− s), we obtain the following Simpson rule

I =
b− a

6
[f(a) + 4f(s) + f(b)] + eS(f).
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Theorem 2. We have the following formulas for the errors eR, eT , eS.
a) If f ∈ C2[a, b] then there exists ξ ∈ (a, b) such that

eR(f) =
1

24
f ′′(ξ)(b− a)3.

b) If f ∈ C2[a, b] then there exists ξ ∈ (a, b) such that

eT (f) = − 1

12
f ′′(ξ)(b− a)3.

c) If f ∈ C4[a, b] then there exists ξ ∈ (a, b) such that

eS(f) = − 1

24
f (4)(ξ)

(
b− a

2

)5

.

Proof of a). By the Taylor theorem, we have

f(x) = f(s) + f ′(s)(x− s) +
1

2
f ′′(ξ)(x− s)2

for a suitable ξ ∈ (a, b). Then

I =
∫ b

a
f(x)dx =

∫ b

a

[
f(s) + f ′(s)(x− s) +

1

2
f ′′(ξ)(x− s)2

]
dx

= f(s)(b− a) + f ′(s)

[
(x− s)2

2

]b

a

+
1

2
f ′′(ξ)

[
(x− s)3

3

]b

a

= f(s)(b− a) +
1

2
f ′′(ξ)

[
(b− s)3

3
− (a− s)3

3

]

= f(s)(b− a) + f ′′(ξ)
(b− a)3

24
.

Proof of b). We obtain the statement b) by expressing f(x) in the form

f(x) = f(a) + f(a, b)(x− a) +
1

2
f ′′(ξ)(x− a)(x− b)

from Theorem 3, Section 10.3. in (51).
Proof of c). We obtain c) by expressing f(x) in the form

f(x) = f(a)+f(a, s)(x−a)+f(a, s, b)(x−a)(x−s)+
1

6
f ′′′(ξ)(x−a)(x−s)(x−b)
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from Theorem 3, Section 10.3. in (51). 2

Theorem 2 tells us that the above rules a) – c) are accurate for short
intervals [a, b] only. If this interval is long, we divide it by equidistant nodes
a = x0 < x1 < . . . < xn = b with step h = (b− a)/n. As

I =
n∑

i=1

∫ xi

xi−1

f(x)dx, (52)

we can use our rules a) – c) for the integrals
∫ xi
xi−1

f(x)dx on the subintervals.
We obtain the following composite rules d), e), f).

d) If we apply the rectangular rule a) to the integrals from (52), we obtain

I =
n∑

i=1

hf

(
xi−1 +

h

2

)
+ ER(f)

= h

[
f

(
x0 +

h

2

)
+ f

(
x1 +

h

2

)
+ . . . + f

(
xn−1 +

h

2

)]
+ ER(f),

ER(f) =
1

24
h3 [f ′′(ξ1) + f ′′(ξ2) + . . . + f ′′(ξn)] =

1

24
h2(b− a)f ′′(ξ)

for a suitable ξ ∈ (a, b).
e) If we apply the trapezoidal rule b) to the integrals from (52), we obtain

I =
n∑

i=1

h

2
(f(xi−1) + f(xi)) + ET (f)

=
h

2
[f(x0) + 2f(x1) + . . . + 2f(xn−1) + f(xn)] + ET (f),

ET (f) = − 1

12
(b− a)h2f ′′(ξ)

for a suitable ξ ∈ (a, b).
f) If n = 2k is even and we apply the Simpson rule c) to the integrals

from x2i−2 to x2i, i = 1, . . . , k, we obtain

I =
k∑

i=1

2h

6
(f(x2i−2) + 4f(x2i−1) + f(x2i)) + ES(f)

=
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . . + 4f(xn−1) + f(xn)] + ES(f),

ES(f) = − 1

180
(b− a)h4f (4)(ξ)

for a suitable ξ ∈ (a, b).
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Definition . A rule for an approximation of I(f) is of algebraic order
n if n is the largest integer such that the rule calculates the integral I(P )
exactly for all P ∈ Pn.

Example . The rectangular and trapezoidal rules are of algebraic order
1 and the Simpson rule is of algebraic order 3.

12.2 Gauss quadrature

Until now, our rules for the numerical integration give us an approximation
of I(f) as linear combinations of values of f in given equidistant nodes with
suitable coefficients.

The Gauss quadrature formulas approximate the value I(f) by a linear
combination

c1f(x1) + . . . + cnf(xn)

with coefficients c1, . . . , cn and nodes x1, . . . , xn such that the algebraic order
of the rule is the largest possible.

For every positive integer n there exists a Gauss formula of algebraic order
2n − 1. Moreover Gauss quadrature is optimal in the following sense. No
formula for numerical integration using the values of integrand in n nodes
has a bigger algebraic order.

The Gauss formula for n = 1 is just the rectangular rule. For n = 2, the
Gauss formula means

I(f) =
b− a

2

[
f

(
s−

√
3

6
(b− a)

)
+ f

(
s +

√
3

6
(b− a)

)]
+

(b− a)5

4320
f (4)(ξ)

for a suitable ξ ∈ (a, b) and for n = 3, the Gauss formula is of the form

I(f) =
(b− a)

18

5f
s−

√
3

20
(b− a)

+ 8f(s) + 5f

s +

√
3

20
(b− a)


+

(b− a)7

2016000
f (6)(ξ).

Here, ξ is a suitable point from the open interval (a, b).

Example . The exact value of the integral
∫ 3
−1 e−

x2

2 dx is 2.051912405.
Approximate this value by the rectangular, trapezoidal, Simpson and Gauss
rules with the number of nodes n = 1, 2, 3, 4.
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The solution is summarized in the following table.

n = 1 n = 2 n = 3 n = 4
rectangular rule 2.6475 2.1406 2.0896 2.0728
trapezoidal rule 0.9265 1.8801 1.9775 2.0104
Simpson rule 1.9929 2.0538
Gauss quadrature 2.6475 1. .9929 2.0555

Remark . The trapezoidal rule seems to be the worst among the rules
explained in this text. Its essential advantage consists in the possibility to
increase its accuracy recursively in a very efficient way.

13 Numerical approximation of the initial–

value problem for the ordinary differential

equations (ODE)

We search a function y(x) satisfying the ODE

y′ = f(x, y(x)) for x ∈ (a, b) with the initial condition y(a) = c. (53)

Definition . We say that the function f(x, y) satisfies the Lipschitz
condition if there exists L > 0 such that

|f(x, y)− f(x, z)| ≤ L|y − z| ∀x ∈ [a, b] ∀y ∈ <.

Theorem 1. If f(x, y) satisfies the Lipschitz condition and x0 ∈ [a, b],
c0 ∈ < are arbitrary then the problem

y′ = f(x, y) in (a, b), y(x0) = c0

has a unique solution y(x) for x ∈ (a, b).

Remark . If ∂f/∂y is bounded in the strip Ω = [a, b]× < then f(x, y)
satisfies the Lipschitz condition with the constant L = maxΩ |∂f/∂y| . In-
deed, by the Mean Value Theorem, we have

|f(x, y)− f(x, z)| =
∣∣∣∣∣∂f

∂y
(x, ξ)(y − z)

∣∣∣∣∣ ≤ L|y − z|

for some ξ between y and z.
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All the subsequent numerical methods are based on the following dis-
cretization of problem (53):

We divide the interval [a, b] by equidistant nodes a = x0 < x1 < . . . with
step h > 0, put y0 = c and, consecutively, according to a certain formula,
calculate the approximations yi for i = 1, 2, . . . as long as xi ∈ [a, b].

The properties of the resulting approximations depend on the following
properties of the used method essentially.

Definition . A numerical method for the problem (53) is called

a) the k–step method whenever the formula for the approximation yi+1

depends on the k preceding approximations yi, yi−1, . . . , yi−k+1.

b) the l–point method whenever the formula for yi+1 requires to evaluate
the function f in l different points.

Definition . A (global) error of the approximation yi is the number
ei = y(xi)− yi for i = 0, 1, . . .

Definition . We say that a numerical method for the problem (53) is
of order p whenever |ei| ≤ c(xi, h)hp for i = 1, 2, . . . and for a function c
bounded for h ∈ (0, h0) with h0 a small positive number.

13.1 One–step methods

a) The Euler method: For i = 0, 1, . . ., (53) gives us y′(xi) = f(xi, y(xi)). If
we approximate

y′(xi)
.
=

y(xi+1)− y(xi)

h
.
=

yi+1 − yi

h
f(xi, y(xi))

.
= f(xi, yi)

we obtain

yi+1 − yi

h
= f(xi, yi).

Then the Euler method formula:

y0 = c

yi+1 = yi + hf(xi, yi) for i = 0, 1, . . .
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The geometric meaning is illustrated in the following Fig. 21.

-
x

6y

y = y(x)

a a
xi xi+1h

yi
yi+1

   
  

Figure 21

Theorem 2. The Euler method is of order 1.

Example 1. Find the numerical solution of the initial–value problem

y′ = 2xy in (0, 1), y(0) = 1

with the step h1 = 0.25 and h2 = 0.125.

In the case h = h1, the formula is of the form

y0 = 1

yi+1 = yi + 0.25 · 2xiyi = yi(1 + 0.5xi)

The resulting Euler approximations y0, . . . , y4 appear in the following table.

i xi yi

0 0 1
1 0.25 1
2 0.5 1.125
3 0.75 1.40625
4 1 1.933594

In the case h = h2, the formula is of the form

y0 = 1

yi+1 = yi + 0.125 · 2xiyi = yi(1 + 0.25xi)
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The resulting Euler approximations y0, . . . , y4 appear in the following table.

i xi yi y(xi)
0 0 1 1
1 0.125 1
2 0.25 1.03125 11.0645
3 0.375 1.09570
4 0.5 1.19843 1.28408
5 0.625 1.34823
6 0.75 1.55889 1.755053
7 0.875 1.85118
8 1 2.25613 2.71828

Comparison of the global errors in the common nodes from the two preceding
tables illustrates the first order of the Euler method. But this method can
be improved by extrapolation on the basis of the following statement.

Theorem 3. If the exact solution y(x) of the problem (53) is in C2[a, b]
and y(x, h) are the values of the Euler method approximation of y by step h
then we have

y(x) = y(x, h) + c1(x)h + c2(x, h)h2 (54)

and c2(x, h) is bounded for h ∈ (0, h0) for some h0 small and positive.

If we approximate the solution of problem (53) by the Euler method with
two different steps h and kh with k > 0, k 6= 1, we obtain (54) and

y(x) = y(x, kh) + c1(x)kh + c2(x, kh)k2h2. (55)

If we multiply the identity (54) by k and subtract (55), we obtain

y(x)(k − 1) = ky(x, h)− y(x, kh) + kc2(x, h)h2 − c2(x, kh)k2h2.

If we divide this identity by k − 1 and put

C(x, h) =
k(c2(x, h)− kc2(x, kh))

(k − 1)
,

we obtain

y(x) =
ky(x, h)− y(x, kh)

k − 1
+ C(x, h)h2,

which gives us an approximation of y(x) of order 2.
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In the last example, we can put k = 2 and h = 0.125 and, for i = 0, 1, 2, 3,
we obtain y(xi)

.
= 2y(xi, 0.125)− y(xi, 0.25) = 2y2i− yi ≡ yextr

i . These values
are summarized in the following table.

xi yextr
i

0 1
0.25 1.0625
0.5 1.27185
0.75 1.71153
0.75 2.57866

Comparison with the values of the exact solution and with the approxi-
mations from the two preceding tables illustrates an essential increase of
accurracy gained by extrapolation.

b) Modification of the Euler method (the Heun method)
is an improvement of the Euler method based on the observation that,

if the graph of the exact solution y(x) near to xi is above the tangent line
then the difference k1 ≡ yi+1 − yi = hf(xi, yi) is smaller than the difference
y(xi + 1)− yi and the difference k2 = yi+2 − yi+1 = hf(xi + h, yi + k1) is too
large. See the illustration of this case in Fig. 22.
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Figure 22

For this reason, this method approximates the difference y(xi+1)− yi by
the arithmetic mean (k1 + k2)/2. Hence the formula of the modification of
the Euler method is the following.

y0 = c

k1 = hf(xi, yi)

k2 = hf(xi + h, yi + k1)

yi+1 = yi +
1

2
(k1 + k2) for i = 0, 1, . . .

of course, this is a 1–step and 2–point method.

Theorem 4. The modification of the Euler method is of order 2.
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c) An application of a general methodology for the development of new 1–
step methods due to Runge and Kutta gave us the following classical Runge–
Kutta method:

y0 = c

k1 = hf(xi, yi)

k2 = hf(xi +
h

2
, yi +

k1

2
)

k3 = hf(xi +
h

2
, yi +

k2

2
)

k4 = hf(xi + h, yi + k3)

yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6 for i = 0, 1, . . .

Theorem 5. The classical Runge–Kutta method is of order 4.

Remark . We can see that this classical Runge–Kutta method is a 1–
step 4–point method. There exist 1–step 3–point methods of order 3. Hence
it seems that a suitable addition of one point increases the order of the
method by 1. It is interesting that this linear increase of order stops at the
number 4. It has been proved that there exist no 1–step 5–point methods of
order 5. For this order, at least 6 points are necessary.

As an illustration of the effect of increase of order, we calculate approxi-
mations of the solution of the problem from the last examples by the methods
c), d).

Example . Approximate the solution of the problem

y′ = 2xy in (0, 1), y(0) = 1

by

a) the Modification of the Euler method and

b) the classical Runge–Kutta method
with step h = 0.5.

a):

i xi yi k1 k2 ei

0 0 1 0 0.5 0
1 0.5 1.25 0.625 1.875 0.034025
2 1 2.5 0.2183
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b):

i xi yi k1 k2 k3 k4 ei

0 0 1 0 0.25 0.281125 0.640625 0
1 0.5 1.283854 0.641927 1.203613 1.414245 2.6981 0.00017125
2 1 2.713145 0.005137

13.2 Multistep methods

a) The rectangular method:

(53) =⇒ y′(xi) = f(xi, y(xi))

If we approximate

y′(xi)
.
=

y(xi+1)− y(xi−1)

2h
.
=

yi+1 − yi−1

2h
f(xi, y(xi))

.
= f(xi, yi),

we obtain
yi+1 − yi−1

2h
= f(xi, yi),

so that the formula of the rectangular method is

y0 = c

y1 =

yi+1 = yi−1 + 2hf(xi, yi) for i = 1, 2, . . .

Of course, this is a 2–step, 1–point method.

Theorem 6. The rectangular method is of order 2.

Remark 1. As the formula of this method is not applicable for the
evaluation of y1, it is possible to use any 1–step method for y1. Even the
Euler method does not disturbe the order 2 of the rectangular method.

Remark 2. As the rectangular method is a 1–step method, its com-
plexity is on the level of the most simple Euler method. It seems as if we
would gain an accurracy of order 2 gratis. The following example illustrates
a sense in which the price for this gain is the loss of stability.

Example . Approximate the problem

y′ = x− y − 3 in (0, 1), y(0) = 1
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by the rectangular method with step h = 0.25. The exact solution is y(x) =
5e−x + x− 4.

Using the Euler method for y1, we have

y0 = 1

y1 = y0 + 0.25(x0 − y0 − 3)

yi+1 = yi−1 + 0.5(xi − yi − 3) for i = 1, 2, 3

and the numerical results computed together with the values of the exact
solution are in the following table.

i xi yi y(xi)
0 0 1 1
1 0.25 0 0.144004
2 0.5 -0.375 -0.467347
3 0.75 -1.0625 -0.888167
4 1 -0.96875 -1.160603

As the following Fig. 23 illustrates, the signs of the global errors alternate
with a tendency to oscillation.
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This tendency is removed by the following elementary postprocessing of
the approximations calculated by the rectangular method using the Euler
method for y1 due to W. B. Gragg.

b) Modification of the rectangular method

y0 = c

y1 = y0 + hf(x0, y0)

yi+1 = yi−1 + 2hf(xi, yi) for i = 1, 2, . . .
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Then

yi =
yi−1 + yi + hf(xi, yi)

2
for i = 2, 3, . . .

approximate y(xi) essentially better than yi. By means of the results from
the preceding example, we can see that

y4 =
−1.0625− 0.96875 + 0.25(−1.03125)

2
= −1.144531 !

13.3 Implicit methods

All the formulas of the methods presented, we compute

yi+1 = V(yi−1, yi, xi, f, h),

for a certain function V , so that we obtain yi+1 by a simple evaluation. Such
methods are called explicit. The situation becomes more complicated when
the formula is of the form

yi+1 = W(yi−1, yi, yi+1, xi, f, h).

Such methods are called implicit.

a) Implicit (backward) Euler method uses the discretization of the equa-
tion (53) of the form

yi+1 − yi

h
= f(xi+1, yi+1).

The resulting formula is

y0 = c

yi+1 = yi + hf(xi+1, yi+1) for i = 0, 1, . . .

The geometric meaning illustrates the following Fig. 24.
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Example . Approximate the initial–value problem

y′ = 2xy in (0, 1), y(0) = 1

by the implicit Euler method with step h = 0.25. The formula is of the form

y0 = 1

yi+1 = yi + 0.5xi+1yi+1, i = 0, 1, 2, 3.

Fortunately, in this case, the formula can be ”solved with respect to yi+1”
with the result

y0 = 1

yi+1 =
yi

1− 0.5xi+1

, i = 0, 1, 2, 3.

The computed approximate values are included into the following table.

i xi yi y(xi)
0 0 1 1
1 0.25 1.14286 1.0645
2 0.5 1.52381 1.2840
3 0.75 2.43810 1.7550
4 1 4.87619 2.7183

b) The trapezoidal method(Crank–Nicolson): If we integrate both sides of
(53) over [xi, xi+1], we obtain

y(xi+1)− y(xi) =
∫ xi+1

xi

y′(x) dx =
∫ xi+1

xi

f(x, y(x)) dx.

If we approximate y(xi) by yi, y(xi+1) by yi+1 and
∫ xi+1
xi

f(x) dx by h/2[f(xi, yi)+
f(xi+1, yi+1)], we obtain the following formula of the trapezoidal method:

y0 = c

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi+1)]

Theorem 7. The implicit Euler method is of order 1 and the trapezoidal
method is of order 2.

Remark . The trapezoidal method is the only α–method, i. e. method
of the form

yi+1 = yi + h[αf(xi, yi) + (1− α)f(xi+1, yi+1)] for i = 0, 1, . . .
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for α ∈ [0, 1], which is of order 2. Clearly, if we put

α = 1, we obtain the Euler method,
α = 0, we obtain the implicit Euler method and
α = 1/2, we obtain the trapezoidal rule.

Example . Let us approximate the standard initial–value problem

y′ = 2xy in (0, 1), y(0) = 1

by the trapezoidal rule with step h = 0.25.

In this case, the formula attains the form

y0 = 1,

yi+1 = yi + 0.25(xiyi + xi+1yi+1),

after simplification

y0 = 1,

yi+1 = yi
1 + xi/4

1− xi+1/4
.

The resulting approximate values are inluded in the following table.

i xi yi

0 0 1
1 0.25 1.0667
2 0.5 1.2952
3 0.75 1.7934
4 1 2.8396

13.4 Stability of the numerical methods for the initial–
value problems

Definition . The approximate solution y0, y1, . . . of the problem

y′ = f(x, y) in (a,∞), y(a) = c (56)

is said to be non–stable whenever any error in the computation of yi inserts
components into the approximations yi+1, yi+2, . . . whose size increases, so
that it debases the whole computation essentially.
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Example . The problem

y′ = y − 1

x2
− 1

x
− 1 in (1,∞), y(1) = 2

has an exact solution y(x) = 1
x

+ 1 and the general solution of the equation
is y(x) = Aex + 1

x
+ 1. The truncation errors and the error of the numerical

method insert the term Aex with A 6= 0 into the exact solution and its
influence increases as x increases. This non–stability is due to the given
problem. We are interested in non–stability brought by the numerical method
or by too large discretization step.

The stability of a method can be tested by its application to the following
trial problem

y′ = λy in (0,∞), y(0) = 1 (57)

Explanation. Assume that, during the solution of a given ODE y′ =
f(x, y), we have computed the value y(x) + e(x) instead of the exact value
y(x). Every numerical method (with certain error which we neglect) requires
that the ODE is fulfilled for the value y(x) + e(x), i. e. we assume

y′ = f(x, y)

in the correct case and
(y + e)′ = f(x, y + e)

in the disturbed case. But the last problem is of the following equivalent
forms, obtained by the Mean Value Theorem:

y′ + e′ = f(x, y) + [f(x, y + e)− f(x, y)]

e′ =
∂f

∂y
(x, ξ) · e

If we put λ ≈ ∂f/∂y(x, ξ), we obtain the equation from the problem (57).
This consideration gives us the following interpretation of the problem (57):

y(x) error of the approximation

λ ≈ ∂f
∂y

a characteristics of the given problem

Definition . We say that a numerical method is absolutely stable for a
given ĥ whenever

yi −→ 0 as i −→∞
for the approximate solutions yi obtained by a numerical method for the
problem (57) with step h satisfying

ĥ = hλ.
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The set of ĥ, for which the given problem is absolutely stable create the
interval of absolute stability. Intervals of absolute stability for some of the
basic methods can be found in the following table.

method order interval of absolute stability
Euler 1 (-2,0)
classical Runge–Kutta 4 (-2.78,0)
rectangular 2 {0}
implicit Euler 1 (−∞, 0) ∪ (2,∞)
trapezoidal 2 (−∞, 0)

Example . Approximate the solution of the initial–value problem

y′ = −10(y − 1) in (0, 1), y(0) = 2

by the Euler, classical Runge–Kutta and trapezoidal method with the step
a) h = 0.25 and b) h = 0.2. It is easy to see that this problem has an exact
solution

y(x) = 1 + e−10x.

a) h = 0.25 :

i xi yEul
i yRK

i ytrap
i y(xi)

0 0 2 2 2 2
1 0.25 -0.5 1.64844 0.88889 1.08208
2 0.5 3.25 1.42047 1.01235 1.00055
3 0.75 -2.375 1.27265 0.99863 1.00055
4 1 6.0625 1.17680 1.00015 1.00005

In Fig. 25, we compare the non–stable Euler approximation yEul(x) with the
exact solution y(x).
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b) h = 0.2 :
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i xi yEul
i yRK

i ytrap
i

0 0 2 2 2
1 0.2 0 1.33333 1
2 0.4 2 1.11111 1
3 0.6 0 1.03704 1
4 0.8 2 1.01235 1
5 1 0 1.00412 1

In Fig. 26, the Euler approximation yEul(x) related to the value of λ̂ on
the boundary of the interval of absolute stability is compared to the exact
solution y(x).
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13.5 The initial–value problem for the systems of ODE
of order one and of higher orders

In this section, we formulate the general initial–value problem for systems
of ODE of order one, illustrate the way in which all the above–presented
numerical methods can be used for this problem and construct an equivalent
initial–value problem for any initial–value problem for systems of ODE of
arbitrary order.

General formulation of the initial–value problem for systems of ODE of
order one:

Definition . We search functions y1(x), y2(x), . . . , yn(x) satisfying

y′1 = f1(x, y1(x), . . . , yn(x)) for x ∈ (a, b), y1(a) = c1

y′2 = f2(x, y1(x), . . . , yn(x)) for x ∈ (a, b), y2(a) = c2 (58)
...

y′n = fn(x, y1(x), . . . , yn(x)) for x ∈ (a, b), yn(a) = cn

103



If we put

y(x) =


y1(x)
y2(x)

...
yn(x)

 , f(x, y) =


f1(x, y)
f2(x, y)

...
fn(x, y)

 , and c =


c1

c2
...
cn

 ,

then (58) is equivalent to

~y′(x) = ~f(x, ~y(x)) for x ∈ (a, b), ~y(a) = ~c (59)

As for the problem (53), we formulate sufficient conditions for existence and
uniqueness of the exact solution of (59).

Definition . A vector function ~f(x, ~y) satisfies the Lipschitz condition
for x ∈ 〈a, b〉 and ~y ∈ <n if there exists a constant L > 0 with the property

‖~f(x, ~y)− ~f(x, ~z)‖ ≤ L‖~y − ~z‖

for all x ∈ 〈a, b〉, ~y, ~z ∈ <n. Here ‖ · ‖ is an arbitrary norm on <n.

Theorem 8. If ~f(x, ~y) satisfies the Lipschitz condition for x ∈ 〈a, b〉,
~y ∈ <n then the problem

~y′(x) = ~f(x, ~y), ~y(x0) = ~y0

has a unique solution ~y(x) in 〈a, b〉 for all x0 ∈ 〈a, b〉, ~y0 ∈ <n.

Remark . Every initial–value problem for a system of ODE of higher
orders can be transformed to an equivalent initial–value problem for a system
of ODE of order one.

We illustrate this statement by the following example.

Example . Let us consider the following initial–value porblem for one
ODE of order four.

y(4) = −y′ + x2y′′2 − y2 in (0, 1),

y(0) = 0, y′(0) = 1, y′′(0) = −1, y′′′(0) = 3.

If we denote the derivatives y, y′, y′′, y′′′ as new functions

y1 = y, y2 = y′, y3 = y′′, y4 = y′′′

then the original problem is equivalent to the following initial–value problem
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y′1 = y2

y′2 = y3

y′3 = y4

y′4 = −y2 + x2y2
3 − y2

1

in (0, 1),

y1(0) = 0
y2(0) = 1
y3(0) = −1
y4(0) = 3

Remark . Each of the above–mentioned numerical methods for the
initial–value problem (53) can be used for the problem (59). In the formulas
for the approximate solution, we just write

~c instead of c
~yi instead of yi

~f(xi, ~yi) instead of f(xi, yi)
~k1 instead of k1
...

...
...

14 Numerical approximations of the boundary–

value problems for the ODE of order two

14.1 Formulation of the boundary–value problem

For given a2 > 0 and p, q, f ∈ C〈0, l〉 (q ≥ o), find y ∈ C2〈0, l〉 such that

−a2y′′ + py′ + qy = f for x ∈ (0, l) (60)

and

y(x) = c Dirichlet boundary condition or

y′(x) = d Neumann boundary condition or

αy(x) + βy′(x) = γ Newton boundary condition (α 6= 0 6= β)

for x = 0 and x = l.

14.2 Physical meaning

There exists a lot of various physical meanings of this problem. We mention
two of them.

y(x) temperature [concentration of alloy]
a2 heat conductivity [diffusion coefficient]

p(x) velocity of flow
f(x) intensity of sorces of heat [of alloy]
q(x) absorption coefficient
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The term −a2y′(x) means the intensity of flow in the positive direction of
the x–axis. Then we can see that the Neumann boundary condition deter-
mines the intensity of flow through the boundary and the Newton condition
means the heat– [alloy–]transfer condition. The following special case of the
Newton condition for x = l concerning heat–flow (here c > 0) means that the
intensity of heat–flow is proportional to the difference between the tempera-
ture of the interval in the boundary point l and the ”external” temperature
near to the end–point l:

−a2y′(l) = c(y(l)− yext)

14.3 Existence of the exact solution

Theorem 1. Let us assume that p(x) does not change the sign in the
inteval 〈0, l〉. If the Dirichlet boundary condition is given in the point{

0 for p ≥ o
l for p ≤ o

}
, then the problem (60) has a unique solution.

14.4 The standard finite difference method

For the discretisation of the problem (60), consider equidistant nodes 0 =
x0 < x1 < . . . < xn = l with the step h = l/n and denote by yi that
approximation of y(xi) which we finally compute for i = 0, 1, . . . , n.

For the inner nodes, i. e. for i = 1, 2, . . . , n− 1, (60) gives us

−a2y′′(xi) + piy
′(xi) + qiy(xi) = fi.

(Here ϕi = ϕ(xi).) If we substitute

yi for y(xi),
yi+1−yi−1

2h
for y′(xi),

yi−1−2yi+yi+1

h2 for y′′(xi),

we obtain the following n− 1 equations

−a2yi−1 − 2yi + yi+1

h2
+ pi

yi+1 − yi−1

2h
+ qiyi = fi,

equivalent to

−
(
a2 +

hpi

2

)
yi−1 + (2a2 + h2qi)yi −

(
a2 − hpi

2

)
yi+1 = h2fi (61)
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for the unknowns y0, y1, . . . , yn. Due to Theorem 1, Section 11, the errors we
introduce by our substitutions correspond to h2.

We obtain the remaining two equations by discretization of the boundary
conditions.

a) The Dirichlet boundary conditions:

y(0) = c1 =⇒ y0 = c1 y(l) = c2 =⇒ yn = c2

b) The Neumann boundary conditions:

y′(0) = d1 =⇒ y1 − y0

h
= d1 y′(l) = d2 =⇒ yn − yn−1

h
= d2

According to Section 11, Theorem 1 a), b), the errors are proportional to h
which is much worse than the errors introduced in the remaining n− 1 equa-
tions. That is why we often approximate the Neumann conditions in the
following more sophisticated way: We introduce fictitious ”approximate val-
ues” y−1, yn+1 of the non–existing values of the solution y(−h), y(l+h). Then
we can approximate the boundary condition y′(0) = d1 and the equation (60)
by the equations

y1−y−1

2h
= d1,

−
(
a2 + hp0

2

)
y−1 + (2a2 + h2q0)y0 −

(
a2 − hp0

2

)
y1 = h2f0.

By elimination of y−1 from these two equations, we obtain a discretization
of y′(0) = d1 with an error corresponding to h2.

The discretizations of the Neumann condition y′(l) = d2 and of the New-
ton boundary conditions can be found in analogical two manners.

Definition . The matrix of the resulting system of linear equations (we
eliminate y0 and/or yn whenever the corresponding boundary condition is of
Dirichlet type) is called the discretization matrix.

Example 1. Approximate the solution of the problem

−0.2y′′ + y′ = 1 in (0, 1), y(0) = 1, y(1) + 0.2y′(1) = 0.5

with step h = 0.2.

On the basis of the physical meanings of the coefficients

a2 = 0.2, p = 1, q = 0, f = 1 and of the heat transfer condition −0.2y′(1) = y(1)−0.5,
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we can roughly illustrate the exact solution in Fig. 27.
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For h = 0.2, we have n = 5, xi = 0.2i, i = 0, 1, . . . , 5 and we can find the
following approximate equations:

i = 0 =⇒ y0 = 1

i = 1, . . . , 4 =⇒ −0.2
yi−1 − 2yi + yi+1

0.04
+

yi+1 − yi−1

0.4
= 1

⇐⇒ −0.3yi−1 + 0.4yi − 0.1yi+1 = 0.04

i = 5 =⇒ y5 + 0.2
y6 − y4

0.4
= 0.5 and − 0.3y4 + 0.4yy5 − 0.1y6 = 0.04

=⇒ −0.4y4 + 0.6yy5 = 0.14

The matrix form of the remaining system is

0.4 −0.1 0.34
−0.3 0.4 −0.1 0.04

−0.3 0.4 −0.1 0.04
−0.3 0.4 −0.1 0.04

−0.4 0.6 0.14

In the following table, the solution of this system is compared with the exact
values of the exact solution y(x).

i yi y(xi)
1 1.1950 1.1901
2 1.3760 1.3633
3 1.5219 1.4903
4 1.5597 1.4920
5 1.2731 1.1529

We can see that maxi≤i≤5 |y(xi)− yi| = 0.1202.

If we put h = 0.1 then we obtain n = 10, xi = 0.1i and by denoting
yi the computed approximate values of y(xi) for i = 0, 1, . . . , 10, we obtain
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maxi≤i≤10 |y(xi) − yi| = 0.0271. This is an indication that the following
remark is valid.

Remark . The standard finite difference method is of order 2.

Example 2. Approximate the solution of the problem

−y′′ + 15y′ = 1 in (0, 1), y(0) = 1, y(1) = 0

with step h = 0.2.

Then we have n = 5, xi = 0.2i for i = 0, 1, . . . , 5, y0 = 1, y5 = 0 and, for
i = 1, . . . , 4, the discretizations

−2.5yi−1 + 2yi + yi+1 = 0.04

After substitution of the values of y0 and y5, we obtain the following matrix
form of the resulting system of equations.

2 0.5 2.54
-2.5 2 0.5 0.04

-2.5 2 0.5 0.04
-2.5 2 0.04

with the following resulting values

i yi y(xi)
1 1.0113 1.0133
2 1.0349 1.0267
3 0.9970 1.0374
4 1.2662 1.0002

The comparison with the values of the exact solution from the previous
table shows that the approximate solution is debased by oscillations. This
fact can be observed in the following Fig. 28, too.
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Now, we formulate sufficient conditions for the stability of the approximate
solution which are used very successfully in many practical situations.

Definition . A square matrix is said to be monotone whenever A is
regular and A−1 ≥ 0 (this means that all entries of A−1 are non–negative).

Theorem 2. The discretization matrix A of any problem from Theorem
1 is monotone if and only if i 6= j =⇒ aij ≤ 0.

Example . It is easy to see that the discretization matrix from Example
1 is monotone. Then, for i = 2, 3, 4, we have

yi =
1

0.4
(0.3yi−1 + 0.1yi+1 + 0.04),

so that, in essential, yi is a weighted average of yi−1, yi+1 with positive coef-
ficients. That is why the resulting approximation is stable.

Remark . We obtain by Theorem 2 and by (63) that the discretization
matrix A is monotone whenever

a2 +
hpi

2
≥ 0 and a2 − hpi

2
≥ 0 ⇐⇒ a2 ≥

∣∣∣∣∣hpi

2

∣∣∣∣∣
for i = 1, 2, . . . , n− 1.

The classical elementary stabilizations of the standard finite difference
method are

a) The artificial diffusion method: If there exists an index i such that
a2 < |hpi/2| then we substitute the coefficient a2 by the least a2, so that
a2 ≥ maxi |hpi/2|.

b) Upwind: Instead of the approximation (yi+1−yi−1)/2, we approximate

y′(xi) by the difference quotient
(yi − yi−1)/h for p > 0
(yi+1 − yi)/h for p < 0

.
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In Fig. 29, approximations of the exact solution (red graph) by the artificial
diffusion method (blue graph) and by upwind (green graph) are illustrated.
Although the modifications a), b) are stable, their accuracy is of order 1,
much worse than the order 2 of the standard finite difference method. This
is one of the reasons why a big lot of new numerical methods have been
proposed for the stabilization of numerical approximation which are of high
accuracy at the same time.
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